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A central goal of biomolecular engineering is the construction of tools to manipulate

nanoscale processes. DNA has proved to be a programmable material suited for this task.

DNA strand displacement reactions can be designed to process chemical information in the

form of concentrations and sequences. DNA nanotechnology has thus far produced devices

for the detection of disease biomarkers, performed computation on chemical inputs, powered

mechanical action at both the nanoscale and the macroscale, and assembled precise sub-

micron structures from the bottom up.

This dissertation addresses three main topics. First, we develop predictive models for

non-canonical nucleic acid hybridization that enable rational design. Second, we show how

rationally designed DNA strand displacement reactions can be used to perform computations

on information stored in DNA. Third, we present nucleic acid computation with both strand

displacement and transcription and discuss strategies for facilitating the scale up of networks.

Finally, we discuss data storage in nucleic acid variants in the appendix.
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Rational design of DNA circuits and structures is possible because the thermodynam-

ics of DNA and RNA hybridization can be approximated using a nearest-neighbor model.

The parameters of this model are typically experimentally determined through the hyper-

chromism of denatured nucleic acids. This is measured through low-throughput UV-Vis

spectrophotometry melting experiments that require a sizable amount of duplexes for a large

set of sequences. For non-canonical nucleic acids or non-standard interactions, this character-

ization can be prohibitively costly and time consuming. Initially, we considered repurposing

a next-generation sequencing (NGS) platform for high-throughput mapping of nucleic acid

hybridization across a large sequence space; however, we found that the platform is suitable

for mapping protein-nucleic acid interactions but not nucleic acid-nucleic acid hybridization

due to its dynamic range. We then assessed whether high-resolution melting (HRM) can be

used as a rapid method for determining approximate model parameters and found that HRM

models can predict relative stabilities between duplexes of different sequences. Using this

method, we developed a predictive model for phosphorothioate DNA which we then applied

to the design of a phosphorothioate-modified catalytic hairpin assembly circuit.

DNA strand displacement reactions can be used not only to manipulate chemical

information in the form of concentration, but also to read and write to more permanent forms

of information, such as sequence and secondary structure. We developed and demonstrated

a DNA data storage scheme that enables in-memory computation. DNA is a promising data

storage medium for meeting today’s rapidly growing data storage needs; however, because

computation on the stored data is usually performed in silico, strands must be sequenced

and re-synthesized at every read-write cycle. Our scheme circumvents the bottleneck of de

novo oligonucleotide synthesis by updating information using strand displacement cascades
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that result in sequence changes readable by NGS. We experimentally demonstrated two

algorithms - binary counting and cellular automaton Rule 110 - and additionally showed

that biologically-occurring DNA sequences without sequence design can be repurposed for

storage and computation. Our scheme is capable of computation on multiple data in parallel,

as well as random access and sequential computation, allowing for scaled up storage.

Programmable chemical computation is also possible with enzymatic reactions such as

transcription. Catalytic activity from enzymes has the potential to simplify circuit design and

produce biologically potent signals. Practical concerns to expanding chemical computation

circuits such as transcription networks include limited readout of signals and time-consuming

purification. We addressed these concerns by expanding on previous efforts to build scalable

in vitro transcription networks. We updated a single-stranded inhibitory transcription switch

design for compatibility with multiplexed NGS readout and developed an analogous single-

stranded switch that is activated by nucleic acid signals.
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Chapter 1

Introduction

“...The cell should be considered as a logical and computational machine, processing

and managing information. Our objective should be to identify what logical and compu-

tational modules operate in cells and how they are derived from the underlying molecular,

biochemical and biophysical mechanisms.” - Paul Nurse, The Great Ideas of Biology

Today’s concept of computation very often comes hand-in-hand with electronic, silicon-

based computers and digital data. Computation, however, is nothing new to Nature and

perhaps least of all to living things. Organisms survive by communicating and processing

information in the form of chemical signals - in fact, one could even argue that life is sim-

ply information that perpetuates itself. Over the course of evolution, fine-tuned biological

parts have emerged that allow organisms to effectively sense signals, interpret information,

and execute tasks. Rather, it is man-made computing that parallels this architecture with

components that perform data storage, software, and hardware.

The chemical computing observed in living systems, however, is markedly different

from electronic computing. First, there is often no clear distinction between storage, com-

putation, and execution. Epigenetics provide one example - histones, the protein hardware

1



that contains genomic DNA within eukaryotic cells, also store a layer of “meta” information

in their post-translational modification states that dictates genetic expression. Conversely,

although RNA was first understood as a biological implementation of “random access mem-

ory”, various non-coding RNAs such as miRNA, lncRNA, and siRNA were later found to

post-transcriptionally regulate genetic expression. Second, rather than operating with bi-

nary ON/OFF signals, chemical information usually exists in a continuous range, being less

analogous to digital computers and more similar to analog computers. For instance, mul-

ticellular organisms uses concentration gradients of morphogens to determine a body plan

during development. Third, biochemical computing tasks are usually distributed across the

organism (or a population of organisms). Decentralized processes such as bacterial quorum

sensing regulate various key processes for survival and adaptation - for example, microbial

populations determine whether to initiate biofilm production, sporulate, or become compe-

tent as a function of secreted signaling molecule concentrations, which is often an indicator

of cell density. When engineer biochemical computing systems, the challenge is to achieve

modularity in a medium that is interconnected by nature.

Given the remarkable adaptability and complexity that life is capable of, it is no

surprise that much research in recent decades has sought to understand biochemical pro-

cesses and reprogram them with novel behaviors. Synthetic biology strives to manipulate

organisms, cells, and even minimal in vitro systems into tools. Both the complexity and

specialization of biology challenge this goal, however. If we want to better understand how

to design synthetic life by distilling the design principles of biochemical networks, we need a

“programmable” chemistry. DNA has proved itself suitable for this role as a building block

of synthetic biochemical networks and applications beyond.

2



In this thesis, we look specifically at how chemical information can be encoded and

processed with nucleic acid-based systems. We begin with what makes DNA suitable for ra-

tional design and later focus on the implementations of data storage, software, and hardware

in DNA nanotechnology.

1.1 DNA as a physical building block

DNA exhibits well-studied and highly predictable chemical behaviors, and its pro-

duction and usage have improved rapidly in recent decades, making it not only a useful

handle for manipulating biological systems but also a customizable molecule for applica-

tions beyond molecular biology. DNA strands hybridize by Watson-Crick base pairing rules

and accordingly fold into thermodynamically stable secondary structures. The stability of

a double-stranded DNA duplex can be precisely calculated using nearest-neighbor models,

which assume that the primary contribution to duplex thermodynamics comes from base

stacking interactions between adjacent nucleobases. Therefore, thermodynamic properties

for any duplex may be predicted using the combined contributions of all nearest-neighbors

contained in the duplex [48, 41] (Fig. 1.1A). Duplex stability correlates positively with con-

centrations of monovalent cations (e.g. sodium, potassium) and is also a function of the

concentration of other ions (magnesium) or reagents (dNTPs) present in the solution [141].

This allows the stability of a DNA duplex at any temperature to be estimated simply by its

sequence and relevant buffer parameters.

The parameters of the nearest-neighbor model for DNA duplex stability were deter-

mined by various groups from the 1980s to the early 2000s using UV-Vis spectrophotometry

3



[76, 46, 50, 162, 183, 161], which directly measures the double-stranded to single-stranded

transition during duplex melting by leveraging the innate hyperchromicity (i.e. increased

UV absorbance in single-stranded form) of DNA. The melting curve that results may be ana-

lyzed to extract properties such as free energy, enthalpy, and entropy of formation (Fig 1.1B,

[148, 132, 151]). The nearest-neighbor model can also be applied beyond perfectly comple-

mentary hybridization between DNA strands - parameters have been derived for DNA struc-

tural motifs [164], RNA [62, 195], DNA-RNA hybrids [184], and some non-canonical nucleic

acids, such as variants with unnatural backbones (e.g. linked nucleic acids, 2’-o-methylation)

[144, 107] or synthetic nucleobases [91]. Available softwares apply these parameters to pre-

dict the stability of two complementary strands or even the expected secondary structures

of a set of strands [87, 229, 160]. These models also make it possible to analyze properties

of nucleic acid duplexes that are crucial for molecular biology applications [142] or to de-

sign multi-stranded DNA-based systems that are programmed to switch between multiple

conformations based on their input or environmental conditions [218].

While predictive parameters drive the rational design of nucleic acid-based systems,

similar parameters have not yet been determined for most nucleic acid analogues, many

of which contain chemical modifications (e.g. phosphorothioates, mesyl phosphoramidate,

2’-fluoro modifications) that are useful in diagnostics or therapeutics. This is in part due

to the high material requirements and costs of UV-Vis melting experiments, which are low-

throughput and necessitate materials on the order of nanomoles. In Chapters 2 and 3, we

explore alternative experimental approaches to deriving sequence-based predictive models

and consider their limitations and tradeoffs.

DNA is highly accessible as a commercial product. Oligonucleotides with custom

4



sequences can be rapidly and cheaply produced at scale - at time of writing, a 30 nucleotide

(nt) oligonucleotide costs ∼10 USD for 25 nmoles and typically ships in 1 business day from

the largest suppliers. Phosphoramidite chemistry on solid-phase synthesis is the dominant

synthesis method currently in use, despite some limitations with yield and quality at longer

lengths as a result of failed coupling [93]. Larger custom sequences on the order of hun-

dreds to thousand bases can be pieced together from chemically synthesized fragments and

biologically amplified as double-stranded duplexes. Alternatively, high-quality, kilobase-long

single-stranded DNA, albeit with native sequences, can be extracted from sources such as

bacteriophages; methods have been reported to produce long strands with custom sequences

by cloning [53]. A plethora of modification chemistries are available for functionalizing DNA,

including adding fluorescent signals (fluorophore conjugation), increasing resistance to degra-

dation caused by nuclease enzymes (backbone modifications such as phosphorothioation or

2’-O-methylation), and attaching labels for later covalent (e.g. O6-benzylguanine aka SNAP-

tag) or noncovalent (e.g. biotin) linking to other biomolecules such as proteins, antibodies,

dyes, or even another oligonucleotide.

Rapid advances in sequencing in recent decades through the development of high-

throughput next-generation sequencing platforms [126] have dramatically improved our ca-

pacity to work with DNA in many areas ranging from clinical contexts to biotechnology

to fundamental research by combining chemical, electrochemical, optical, and enzymatic

advances. Among the most popular technologies are Illumina sequencing-by-synthesis plat-

forms, such as the Illumina MiSeq, which enable massively parallel sequence readout on

the order of tens of millions of individual sequences for sequences up to several hundreds

of base pairs in length [14]. While these platforms are predominantly used to analyze se-
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quence information (as in genome science) or to detect the presence of sequences impli-

cated in disease states (as in diagnostics), the DNA microarray-like parallel presentation of

covalently-attached, heterogeneous sequences may be additionally useful in probing biomolec-

ular interactions involving DNA. In Chapter 2, we explore the possibilities and limitations

of repurposing parallel sequencing platforms for high-throughput analysis of DNA-based

interactions. As the technology to read longer sequences matures, platforms for portable

sequencing in low-resource conditions [128], low-cost rapid sequencing in real-time [158], and

single-molecule sequencing [53] have also emerged. Together, these factors accelerate the use

of DNA in applications beyond molecular biology.

1.2 DNA as data storage

Given that DNA evolved as a biological information storage medium, it is not sur-

prising that it is currently being considered for the storage of man-made information. The

volume of data consumption is increasing exponentially and has exceeded expectations in

the last two years, possibly from higher demand due to the 2020 pandemic - 181 zettabytes

of data are projected to be produced in 2025 alone [5]. With this explosive growth comes

an urgent need for space-efficient, stable, and cost-effective means of archiving data. The

capacity for electronic data storage, while also growing steadily in recent years, is dwarfed

by data consumption - in 2020, the worldwide data storage capacity reached 6.7 zettabytes,

little more than 10% of the total data produced that year, which is 64.2 zettabytes.

DNA’s 4-letter nucleotide alphabet translates to a theoretical maximum information

density of 455 exabytes/gram [39] in which each nucleotide position encodes 2 bits, with
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recent experimental results demonstrating encoding and recovery of 215 petabytes per gram

[59]. The successful extraction of sequencing-viable DNA from fossilized remains suggests

that, under the right conditions, a specific DNA sample could be preserved for centuries

to millennia [11, 130]. Moreover, genetic information is perpetuated in living cells through

both replicative and error-correcting molecular mechanisms. Synthetic oligonucleotides are

stable for years when lyophilized or dissolved in appropriate buffers and stored in a freezer

[3], and double-stranded DNA can be kept at -20◦C for years without significant loss. Stable

room-temperature storage is achievable with encapsulation within a matrix to protect from

heat, radiation, humidity, enzyme contaminants, and other factors [77]. Minuscule amounts

of DNA down to just several copies are theoretically amplifiable with PCR. In contrast, the

typical external hard drive has a lifespan of 5 years and costs 100 USD to replace in 2022. US

data centers consumed nearly 70 billion kilowatt hours of electricity and over 600 billion liters

of water in 2014. Flash memory has a theoretical maximum density of 70 GB/g; magnetic

tape storage, while less consuming of resources and cheaper to produce, has a significantly

lower data density capacity than DNA at a current maximum of 201 GB/in2 as of 2017 [2].

Thus, over the past two decades DNA storage has become an increasingly appealing form of

alternative data storage to meet the demands of the digital world.

Modern in vitro DNA storage schemes typically operate on a read-write cycle that

involves encoding, synthesis, sequencing, and decoding. In this form of DNA storage, the

DNA is more akin to hard drives than random access memory, because computation does

not occur “in memory”. Accessing any specific piece of information (“random access”) can

be achieved by PCR with primers that target the information of interest [138, 187, 210, 17].

Like other data storage media, DNA must be robust to data corruption. Assuming that en-
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coding and decoding steps can be done perfectly in silico, these errors can accumulate in the

synthesis (abasic sites, truncation, deletions), storage (temperature fluctuations, radiation

damage, nuclease contamination), and sequencing (missing fluorophore, polymerase misin-

corporation) steps. Simple redundancy can resolve information loss by reconstructing lost

data using a consensus; however, this strategy significantly reduces the desirable high data

density promised by DNA storage and does not necessarily protect data from corruption. For

this reason, error-resistant encoding and decoding schemes are critical to overcoming error

accumulation. An early scheme demonstrated by Goldman et al. in 2013 encoded data in

overlapping segments at four-fold redundancy to protect against missing oligos [74]. Bornholt

et al. later built on this idea by applying a logical XOR to reduce redundancy to 1.5-fold

[17]. Some schemes have borrowed from coding theory to apply existing error-correcting

codes with great success. Works by Grass et al. and Blawatt et al. have incorporated Reed-

Solomon codes to protect against dropout of oligos [77, 16]. Ehrlich and Zielinski’s DNA

Fountain scheme in 2017 adapted fountain codes for DNA data encoding and enabled both

detection and correction of error that was tolerant of missing oligonucleotides, allowing full

recovery at very low redundancy.

The cost and accessibility of sequencing and synthesis are the key bottlenecks to

adapting DNA data storage for widespread use. Sequencing has seen many advances in recent

years thanks to the development of novel high-throughput platforms. On the other hand, the

cost of synthesis is decreasing much more slowly than for sequencing, and fundamental lim-

itations prevent the large-scale production of long (>100 nts), high-quality oligonucleotides.

One solution may involve enzymatic de novo oligonucleotide synthesis [146]. Although the

incorporation of a determinate number of nucleotides (as opposed to homomer runs) remains
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a challenge, Church and colleagues have demonstrated a scheme that can nevertheless utilize

enzymatic synthesis by encoding information in transitions between homomer regions [117].

Another solution would be to repurpose biologically occurring DNA by storing information

in the topology rather than the base sequence of duplexes. Tabatabaei et al. have devel-

oped a write system that involves the programmable restriction enzyme Pyrococcus furiosus

Argonaute to store information by nicking specified positions in E. coli genomic DNA [186].

Although these schemes in theory have a lower data density by not encoding directly with

the sequence (experimentally achieved 4 EB/g in Tabatabaei et al., theoretical maximum of

90 EB/g Lee et al.), they are no longer limited by strand length, less prone to data loss, and

can in practice more efficiently use adaptor or metadata sequences.

Directly editing the encoded information could allow costly and time-consuming cycles

to be skipped by reusing existing strands. Another work by Milenkovic and colleagues

uses PCR-based methods to access and edit data in vitro [187]. This work used a prefix-

synchronized code to store words in a lookup dictionary for efficient storage. While the

schemes presented in this work circumvent de novo synthesis of an updated sequence, they

require shorter fragments to be synthesized as primers containing new information. Recently,

Wang et al. have proposed an in-memory computation scheme based on single instruction,

multiple data operation using DNA strand displacement (SIMD||DNA) in which the encoded

data is a direct function of the computational output [200]. This requires no intermediate

synthesis steps, as information is encoded in the position of nicks in predetermined regions

corresponding to bit values. In Chapter 4, we demonstrate the scalability of SIMD‖DNA

by coupling computational outputs to sequencing readout by NGS. We additionally reduce

the need for long oligonucleotide synthesis by repurposing naturally-occurring M13 DNA for
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data storage.

Complementary to the maturation of DNA storage is the development of algorithms,

chemistries, or proteins that make it possible to store and retrieve information in polymers

other than DNA. At present, phosphodiester DNA is the primary medium in which data

storage has been implemented. RNA is a significantly less stable medium considering its

2’ hydroxyl group allows self-hydrolysis to occur spontaneously, and RNA nucleases are far

more ubiquitous in the environment than DNA nucleases. Encoding information in chemi-

cally modified nucleic acids either as a means of protection against nuclease contamination or

to build parallel channels of information is possible if the necessary protein tools are avail-

able. In Appendix A, we demonstrate how directed evolution methods can facilitate this

goal by expanding the space of viable storage media to non-canonical nucleic acids through

the development of novel polymerases. Additionally, we update the DNA Fountain coding

scheme [59] to accommodate 2’-o-methyl-modified oligonucleotides, the chemical synthesis

of which is more prone to deletion errors.

1.3 DNA as software

The programming language of biochemical networks is implemented with concentra-

tions and chemical kinetics. Just as models of duplex stability allow the specification of

precise binding through sequence, experimental data on the DNA hybridization kinetics en-

ables the prescription of desirable hybridization behaviors by tuning reaction rates. DNA

kinetics can be accurately and sensitively measured using fluorescence [135]. Association

constants of 105 to 107 M−1 s−1 have been reported for two complementary strands from 10
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to 30 nts long hybridizing at room temperature under high cation conditions [135, 65, 225].

A bimolecular association constant of 106 M−1 s−1 approximately translates to a time-to-

half completion of about 30 seconds [175]. Dissociation varies dramatically with length; for

example, the half-life of dissociation can range from minutes to centuries for a 10-base pair

duplex to a 20-base pair duplex [135]. The possibility of making G-C bonds or sequence

repeats increase the chances of forming a stable initial bond that may then zipper or adjust

into the hybridized form [139]. More recently, a weighted neighbor voting algorithm that

predicts the rate constant of hybridization for a given sequence to within a factor of 3 with

91% accuracy has been developed [226].

Given this understanding, length and sequence composition can translate to tunable

parameters with which to design hybridization reactions with custom kinetics. DNA strand

displacement (DSD) is a reaction in which a hybridized (target) strand in a duplex changes

its strand partner. This is energetically favorable when the exchange results in the overall

maintenance or increase of the total number of bases paired (Figure 1.2). For such a reaction

to occur, the new partner strand must make an initial contact with an unbound base pair

on the target strand. Because the duplex is highly stable and fraying occurs slowly (Fig-

ure 1.2A), DSD may be accelerated by a toehold - a single-stranded region on the hybridized

strand. Upon binding to the toehold, the new partner strand subsequently competes with

the incumbent partner in a random walk process called branch migration. When the new

partner fully exchanges all base pairing contacts with the incumbent partner, the incumbent

partner is either completely unbound and dissociated (toehold-mediated strand displace-

ment; Figure 1.2B) or remains bound to a toehold on the target that is not complementary

to the new partner (toehold exchange; Figure 1.2C). In toehold exchange reactions, because
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toeholds are usually only 2 to 6 nucleotides long, the incumbent strand may spontaneously

dissociate after a short period of time, leaving behind a free toehold that may initiate further

DSD reactions. The effective rate of toehold-mediated strand displacement is affected by

the toehold binding strength (which is a function of sequence and length) and varies from

10 M-1s-1 to 107 M-1s-1 for toeholds 1 to 7 nucleotides in length [225]. Toehold exchange

reaction rates depend on the lengths of the toeholds. When the first toehold is longer than

the second, the first toehold length determines the rate (since part of the second toehold is

indistinguishable from the branch migration); when the second toehold is longer, the reac-

tion rate varies with the difference in length between the toeholds [225]. Additional control

over reaction rates are possible through variations of toehold exchange such as remote toe-

holds, which can be used to initiate strand invasion, branch migration, and displacement at

regions non-adjacent to the toehold (Figure 1.2D) [68]. Likewise, strand displacement rates

can be controlled in RNA; computational simulation studies on RNA show that the rates of

toehold-mediated strand displacement in RNA range from 1 M−1s−1 to 106 M−1 s−1 (similar

to DNA), with toeholds on the 5’ end resulting in a much faster rate than the same toehold

sequence on the 3’ end [185].

This precise control over the rates of hybridization-based reactions makes it possible

to engineer systems of chemical reactions that are driven by chemical equilibrium to exhibit

defined behaviors. At an abstract level, any chemical reaction can be simplified to a set

of reactant and product species and their corresponding stoichiometries. A system of such

reactions can be represented as a chemical reaction network (CRN). To compute with CRNs,

information is encoded as the concentration of a species, and reactions that involve the species

act as the algorithm. In this manner, CRNs can be devised to carry out various functions
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on chemical inputs [176, 31]. Examples of such functions include linear functions such as

addition (Figure 1.3A) and nonlinear functions such as the maximum function (Figure 1.3B).

DSD programming languages have been developed to translate CRNs to experimental DNA

implementations [176, 24, 31]. In DSD implementations, a species is defined as the combina-

tion of a strand and its bound state - for instance, a target species that exists mostly in the

bound state at the beginning of the computation may become increasingly unbound over the

course of the computation, and the concentration of the unbound target strand is defined

as the output signal. This convention is due to the fact that many DSD systems seek to

be enzyme-free to maximize programmability, which comes at the cost of forgoing de novo

synthesis or degradation of strands within the system. Such DSD systems are constructed

at a far-from-equilibrium state so that equilibrium will drive forward the computation, like

a compressed spring. A system will therefore have the same overall concentration of a par-

ticular DNA strand at the beginning and the end of the computation. To accelerate the

forward reaction, many DNA-only systems use a high concentration of “fuel” molecules that

are consumed (i.e. reached their energetically favored state) to amplify the signal, driving

computation in the process. The output of a computation is generally coupled to fluorescence

signaling through a molecular beacon - a double-stranded or hairpin structure with a single

pair of covalently conjugated fluorophore and quencher molecules that become physically

separated upon binding to the target strand. The fluorescence signal is monitored over the

course of the computation as an indication of the output at any given time.

Various circuits have been experimentally implemented with DSD reaction motifs to

perform computational tasks from digital logic to spatial pattern formation. The seesaw

gate (Fig 1.3C) is a motif by Qian and Winfree that generalizes toehold exchange reactions
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[152]. Input strands contain two longer regions, or domains, surrounding a central toehold.

Seesaw gates are complexes with a top strand (similar in structure to an input strand) that is

partially hybridized to a bottom strand. Seesaw gates each include two toeholds. Inputs are

identified by the sequences of their domains - only if an input strand contains a complemen-

tary domain to a gate will toehold exchange occur and displace the top strand (output of the

gate), which may act as input downstream. Boolean logic circuits that implement bitwise

mathematical operations [152] and neural network pattern recognition circuits [153, 34] have

been constructed using cascading layers of seesaw gates. Qian and colleagues trained neu-

ral networks in silico to determine appropriate weights to achieve memory for several 4-bit

patterns that were then encoded in the concentrations of gate complexes. However, negative

weights are required in neural networks to calculate the weighted summation of all inputs but

cannot be represented as a negative concentration. As a workaround, Qian and colleagues

have in one instance used dual-rail representations that separately encode “positive” and

“negative” concentrations both as positive concentrations [153] and in another used winner-

take-all motifs based on pairwise annihilation [34]. The output of DSD computations may

also be dynamic and generate patterns over time or location, impressively without the use

of enzymes. The “rock-paper-scissor” oscillator is a CRN containing three species that in-

terconvert to produce waves with defined periods. Using only DNA hybridization reactions,

Srinivas et al. compiled this CRN into a DSD system and demonstrated in vitro oscillatory

behavior, with each target species completing more than 2 cycles over the course of 50 hours

[178]. Chirieleison et al. constructed a DSD circuit that performs edge detection on the area

of UV light exposure and to produce a fluorescent pattern [35]. The circuit uses photola-

bile linkers that become cleaved upon UV irradiation to release upstream signaling strands
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while also inhibiting activation of downstream signals. This enacts an incoherent feedfor-

ward loop, which produces a pulse of signal over time. Released signals are amplified in a

process called catalytic hairpin assembly [119], in which signal strands catalyze hybridization

between kinetically trapped hairpin strands. The signal is amplified and transduced into a

downstream signal in the form of a single-stranded domain, which in turn interacts with

fluorescent reporter complexes. Because the system is spatially distributed across a heavily

cross-linked media that slows diffusion, signals accumulate to form a signal gradient along the

edge of the irradiated area. DSD systems that can generate lasting, complex patterns that

are discrete [166] or continuous [165] have also been proposed. The assembly of large DNA

structures can be conditionally initiated through the output of DSD circuits. Similar to cat-

alytic hairpin assembly, the hybridization chain reaction uses a single-stranded DNA strand

to catalyze enzyme-free hybridization between metastable hairpins [49]. This technique has

applications in in situ hybridization, where the unbounded multi-stranded assemblies can

serve as fluorescent detectors with signals orders of magnitude brighter than one-to-one in

situ probes [36, 37]. Schulman and colleagues have adapted hybridization chain reaction for

finite assembly to drive the controlled expansion of hydrogels to produce mechanical motion

[23], as well as a “locked” design that becomes activated upon strand displacement by an

upstream DNA signal [61]. This diversity of behaviors that may be achieved using DNA

alone is a testament to the success of nucleic acid rational design strategies.

Despite its versatility, however, DNA is ultimately not as chemically reactive as en-

zymes. Enzyme components can not only more efficiently drive DNA circuits towards com-

pletion but can actuate biologically potent responses to molecular input. To balance the

tradeoff between efficiency and programmability, recent works have included proteins from
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routine molecular biology application as standard parts of in vitro chemical circuits, with

strand displacement reactions as the customizable components. This has achieved the goal

of recapitulating complex biochemical dynamics with minimal, rationally designed systems.

For example, the Polymerase/Exonuclease/Nickase (PEN) system developed by Rondelez

and colleagues consists of a DNA template, a DNA primer, Bst DNA polymerase, nickases,

and exonuclease that operates by enzymatically synthesizing new strands and degrading ex-

isting strands [9]. Complex far-from-equilibrium behaviors have been shown using the PEN

system, including oscillations [84], stable chemical spatial gradients [220], and traveling waves

[145, 221, 219].

T7 RNA polymerase (T7 RNAP) is another commonly used enzyme tool for in vitro

computation. T7 RNAP is readily used in vitro because it requires a single subunit, and is

both highly specific to its promoter (reducible to a minimal double-stranded 17-nt sequence)

and highly active [28, 180]. Using T7 RNAP transcription as a means of producing circuit

parts, Schaffter and Strychalski developed an RNA version of the seesaw gate by Qian and

Winfree for boolean logic operation [168]. These transcribed RNA gates have a practical

advantage over DNA complex gates in that the RNA gate transcripts contain a self-cleaving

ribozyme, ensuring one-to-one assembly in vitro without additional purification steps. Fur-

thermore, the state of transcriptional activity itself can be the output of computation. Kim

et al. introduced the T7 transcription gate in 2004, a circuit element that conditionally tran-

scribes RNA strands based on the hybridization state of the T7 promoter (Figure 1.4A). As

transcription is dependent on the presence of a double-stranded promoter region, gates are

switched ON upon binding of a DNA signal strand complementary to the promoter sequence.

RNA transcripts can act as inhibitors of input for downstream gates by toehold displace-
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ment of the promoter top strand, or indirectly as activators by binding complements of DNA

signal strands and thereby freeing the signal to interact downstream. RNase H is included in

these transcriptional circuits, which cleaves RNA strands bound to DNA as in the case of the

inhibited signal, allowing the system to produce dynamic outputs. Kim and Winfree have

since proposed transcriptional circuit designs for logic circuits and neural networks [108] and

experimentally demonstrated oscillatory, bistable, and pulse behavior using transcription

[110, 111, 204, 109]. Schaffter and Schulman have expanded on this design of the transcrip-

tion gate with additional motifs for state induction and signaling to scale up circuits, and

have demonstrated circuits with feed-forward architecture and switchable states that contain

up to four transcription gates and induction nodes [167]. Kar and Ellington have sought a

more scalable conditional transcription gate design by developing a single-stranded hairpin

transcription gate (Figure 1.4B) [104]. This hairpin circuit element can act as an inhibitor

for one or two input strands, performing boolean NOT and NAND operations. Rationally

designed transcription factors by Chou and Shih present another method to switch between

active and inactive transcription that uses a DNA tether covalently attached to a T7 RNAP

as a component of DNA-based transcription factors [38]. Upon strand displacement that

results in the tether binding to a template strand - which contains complementary single-

stranded domains to the tether, a double-stranded T7 promoter, and a double-stranded gene

- transcription of the gene is activated.

Finally, DSD circuits can actuate phenotypic change by interfacing with enzymes in

vivo. Several generations of riboswitches - RNA transcripts that are conditionally translated

by the secondary structure of the ribosome binding site (RBS) - have been in development

in the past two decades. Starting with Isaacs et al. in 2004, riboregulator designs initially
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involved sequestering the ribosome binding site by direct hybridization with an upstream

portion of the transcript. Later, Green et al. have presented designs with fewer sequence

constraints that prohibit ribosome binding by secluding the RBS within a hairpin that be-

comes unfolded and available for translation upon binding of a linear trigger RNA strand

[81]. This design has since been expanded to accommodate up to 4 inputs for logic com-

putation [80], in addition to a repressor switch design that prohibits ribosome binding with

a highly stable RNA three-way-junction [112]. These designs also yielded a fair number of

mutually orthogonal sets (18 activators and 15 repressors) that may be used within the same

system without significant crosstalk. In parallel, Chappell et al. have presented components

using transcription attenuators to form upstream terminator and anti-terminator sequences

to regulate transcription [29].

Nucleic acid circuits with and without enzymatic components have been successfully

applied to molecular detection. Isothermal amplification techniques such as catalytic hair-

pin assembly, loop-mediated isothermal amplification [136], rolling circle amplification [47],

and strand displacement amplification [198], are well-suited as a single-component circuit for

point-of-care diagnostics because their isothermal operation does not require special equip-

ment such as PCR machines [71]. These techniques have been used in a variety of assays,

including detection of pathogens (e.g. HCV, chlamydia) [82, 18] and gene analysis (e.g.

SNP detection) [47]. Detection of single disease analytes is usually computationally simple,

involving activation or inhibition conditional on the presence of the target molecule. More

complex circuits, like molecular classifiers, can be used to make more diagnoses based on

multiple disease markers. For instance, Lopez et al. developed multi-gene classifiers to dis-

tinguish healthy plasma from cancer plasma or bacterial infections from viral infections by
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detecting concentrations of seven RNA transcripts of interest, achieving correct classification

on all 12 patient samples tested in vitro [127]. Since then, Zhang et al. have implemented

a four-gene classifier that takes miRNA profiles from serum samples of healthy and lung

cancer patients as input [223]. This circuit achieved an accuracy of 86.4% in distinguishing

between healthy and diseased states in a total of 22 samples.

Several challenges to DNA computation bottleneck its progress. First, scaling up

rationally designed circuits is often challenging. Most commonly used gate components are

multi-stranded complexes and therefore must be stoichiometrically and correctly annealed

prior to use to prevent free strands from interfering with downstream signals. For this rea-

son, complexes generally require gel purification to remove unbound strands. As the size

of the circuit increases, this time-consuming operation becomes less and less feasible. At

present, the largest DNA-only circuit contains around a hundred gates [34] which, while

impressive, is still far from the complexity of natural biochemical systems. Nucleic acid

circuits involving transcription have presented some solutions to this issue; for instance, the

single-stranded transcription switch design by Kar and Ellington [104] and the self-cleaving

seesaw gates by Schaffter and Strychalski [168] ensure a one-to-one ratio between the top

and bottom sequences. Second, because signals are generally represented as concentrations

of specific molecules, it can be difficult to read multiple results in parallel within one sam-

ple. Signals are read out using fluorescence, meaning multiplexed signal readout requires

distinct, conjugable fluorophores with non-overlapping emission spectra. It may therefore

be helpful to couple signals to high-throughput quantification such as qPCR, NGS, or other

methods that are equipped to analyze mixed populations. For instance, assays in which

computational output is designed to produce a change in sequence (or possibly even use
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sequence as an additional layer of instruction through mismatches, partial complementar-

ity, etc.) could take advantage of high-throughput sequencing technologies. Third, while

in theory even short sequence domains promise orthogonality because of the large space of

possible sequences, similarities between domains could cause cross-talk and leak in reality

and need to be addressed empirically. Strategies for reducing unwanted leak in DSD systems

have been presented [202]. Addressing leak in a system is a slow troubleshooting process

that could potentially also benefit from multiplexed sequencing readout which captures a

snapshot of all output and intermediate signals at once for more transparent debugging.

In Chapter 4, we present a DSD scheme that results in a change of sequence, making it

compatible with next-generation sequencing and therefore scalable. In Chapter 5, we show

that next-generation sequencing and qPCR may also be used as a means of quantifying

concentration at a scale.

1.4 DNA as hardware

The programmability of DNA not only makes it suitable as a medium for biochemical

software, but also a choice substrate for prescribing exact structures at the nanometer scale.

In doing so, DNA structural assemblies have filled a gap in the demand for customizable

nanotechnology by taking a bottom-up approach. Although we will not cover any work by

the author in this area in a later chapter, we will nevertheless address some of the notable

works and key directions in this field given its rapid growth and relevance to the fields of

DNA data storage and DNA computation.

DNA nanostructures are composed of repeating structural motifs. Holliday junctions
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are a type of stable immobile multi-stranded DNA structure that may be used as a tile for

2D assemblies, or connected in 3D to produce wireframe structures [171]. Another common

style of DNA structure is the origami tile, which folds a long, single-stranded DNA scaffold

using shorter oligonucleotide staples to produce filled tiles [159]. Freeform structures can

also be made using the scaffold and staple method [99]. The scaffold DNA, which is usually

kilobases long and necessarily single-stranded, is sourced from bacteriophages that produce

circular, ssDNA genomes [26]; because the native sequence is unaltered, the shorter oligonu-

cleotide staples are designed to complement sequences in different regions and bring them

together physically. If an artificial sequence is desired, it can be produced enzymatically

and at the correct stoichiometry either by in vitro amplification techniques such as rolling-

circle amplification or by replication in vivo with bacteriophage [53]. DNA nanostructures

have been produced and assembled in vivo by genetically encoding components strands and

reverse transcribing selected transcripts to produce the ssDNA components [56]. RNA has

additionally been explored as a material for assembling nanostructures. Both standalone

structures and repeating meshes (up to 100 nm without deformities) have been produced

cotranscriptionally [67, 83, 123], and structures can even be assembled in vivo [120].

To produce more modular components that depend on local interactions for assem-

bly rather than “seeding” interactions, designs using only short DNA oligonucleotides have

emerged [212, 106]. These assemblies use fairly short (32 to 64 nts) oligonucleotides that

hybridize across multiple strands to produce a web of connections between strands in a man-

ner reminiscent of LEGO blocks. Recently, crisscross polymerization has been demonstrated

as a rapid, highly multi-stranded assembly mechanism for building large 2D slat structures

[134], with the latest designs reaching multiple microns in dimension [205]. Structures may
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be periodically assembled with repeating strands to produce larger structures of unbounded

dimensions, or aperiodically assembled using unique strands, the latter case trading off as-

sembly size for the ability to uniquely address specific locations.

This bottom-up control over submicron geometry has broad applications across dis-

ciplines from therapeutics to optics. Targeted delivery of drugs in vivo has been widely

pursued. Molecular payloads contained within DNA origami structures may be delivered

to specific regions of the body by passive targeting (accumulation in target regions) [227],

and the structures containing these drugs may be programmed for conditional release in the

presence of protein biomarkers [6]. DNA and RNA nanostructures can also act as scaffolds

for other biomolecules such as proteins and small molecules [66]. In certain disease states,

the geometry between drug molecules can have a large impact on treatment efficiency; DNA

structures can scaffold the precise positions and stoichiometries of drug molecules to more

effectively deliver these drugs [222]. DNA origami scaffolds can serve as templates for or-

ganic synthesis for higher yield and improved chemoselectivity [196]. Functional structures

such as synthetic lipid membrane channels have been constructed [116]. Nanofabrication

applications have also utilized the precise control afforded by nucleic acid hybridization; the

production of nanoscale metallic devices with programmable plasmonic properties can be

achieved with the help of origami scaffolds [75, 170]. DNA nanostructures have also been

used as tools to investigate biophysical [64, 63] or compositional [174] properties of proteins,

and as tools for gene detection similar to microarrays [105, 181]. This space of applications

can be further expanded with various conjugation techniques that enable the construction

of functionalized, robust nanostructures [209]; for instance, Structures can be chemically

coated to be made significantly more nuclease resistant for in vivo use [7].
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DNA-based systems have also explored several methods for creating mechanical mo-

tion through the binding and unbinding of sequence domains. A well-studied example is the

DNA walker, which is a nanoscale machine that makes directional progress (walk) on DNA

duplexes (track) by alternatingly hybridizing its single-stranded overhangs (feet) with free

overhangs from the tracks (footholds). Initial designs were inspired by the “walking” mo-

tion of kinesin and dynein along microtubule filaments. In 2004, Shin and Pierce developed

a double-stranded DNA walker whose walking directional movement along a duplex track

could be controlled by adding specific strands [172]. These strands can attach one foot of

the walker to any foothold within reach, or release a bound foot by displacing a previous

attachment strand. An autonomous design was developed around the same time by Yin et

al. in which a DNA walker travels between posts by hybridization, followed by ligation and

restriction digest to produce motion using a “scorched earth” strategy [213].

The main areas of improvement for dynamic DNA structures are processivity, speed,

and directional control. Jung et al. showed that the addition of a simple 8-nt “cleat” -

an extension of the toehold region - to a DNA walker resulted in up to 47 steps while

remaining bound for 12 hours [101], significantly improving processivity (albeit trading off

speed) compared to a previous cleat-less design at 36 steps in 40 minutes [100]. Going

beyond the idea of a two-legged walker, Yehl et al. produced high-speed DNA-based rollers

by coating spherical particles with DNA “feet” and sped up release from footholds using

irreversible RNase H digestion, achieving speeds on the order of about 80 nm/s [211]; for

comparison, this is 10% of the in vitro speed of conventional kinesins at 800 nm/s [92].

Impressively, electrical fields can be used to rotate a DNA robotic arm within milliseconds

[114]. Other modes of top-down control have driven mechanical action at the nanoscale,
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including light (hybridization/dissociation using azobenzene and its derivatives; [216]) and

pH (structural change based in the i-motif; [55]).

As is the case in molecular biology where the lines between software and hardware

are blurred, so it is in DNA nanotechnology where the nucleic acid components that process

signals often also actuate responses. Beyond walking motion, dynamic DNA structures

have accomplished other tasks at the molecular scale. Simmel and colleagues have used the

aforementioned electric field-controlled DNA robot arm to modulate fluorescent signals in a

computer-directed manner by moving a gold nanorod into and out of range of fluorophores

immobilized on DNA origami [114]. Qian and colleagues demonstrated autonomous cargo

sorting with a DNA walker that traveled via random walk along a DNA origami track, picking

up oligonucleotide-labeled cargo and dropping them off at their corresponding goal locations

[192]. DNA walkers have also found application in controllable plasmonic nanostructures.

Zhou et al. have produced a large (35 x 10 nm) gold nanorod walker and “stator” pair that

emits polarized light with distinct circular dichroic spectra as a result of coupling between

the nanorods [228]. The relative position of the walker to the stator is mediated by strand

displacement through the addition of strands. The precise, sequential gait of DNA walkers

can provide a valuable method of control for multi-step organic synthesis. He and Liu have

gone beyond DNA-templated organic synthesis strategies [121] and achieved a series of amine

acylation reactions to form oligoamides with prescribed sequence through the motion of a

DNA walker [86].

DNA origami seeks to bridge top-down fabrication techniques with bottom-up self-

directed assembly by creating programmable and functional nanoscale tools. Among the

challenges that DNA origami faces today include low yield, unstable larger-scale (i.e. beyond
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micron) assemblies, lack of detailed analytical models of folding, high costs from synthesis

of hundreds to thousands of custom oligonucleotides, and incompatibility with experimental

conditions found in some applications. Attaining the promise of nanoscale control in a wide

range of practical applications hinges on how well these hurdles can be addressed.

1.5 Concluding remarks

Given the exploration of DNA as a programmable material in the past few decades,

we can now better identify in which applications nucleic acids excel. Even if Watson-Crick

base pairing and predictive thermodynamic models afford researchers precise control over the

structures and kinetics adopted by DNA or RNA in a given environment, nucleic acids in-

herently lack the chemical reactivity that is achievable with enzymes. In applications where

higher reactivity is necessary (e.g. ligand-specific binding, catalysis), this can be partially

remedied by modifications that expand the oligonucleotide alphabet to non-canonical or

charged nucleobases [73, 43], but a more generalizable approach is to combine standard pro-

tein components (e.g. antibodies or well-characterized polymerases) as a part of rationally

designed tools. For instance, oligonucleotide-tagged antibodies enable super-resolution mi-

croscopy on fixed samples by leveraging the kinetics of DNA probe binding in the technique

known as DNA-PAINT [103]. Also, the inclusion of polymerases and nucleases as parts of

synthetic biochemical networks can drive gene expression through the de novo production

or degradation of RNA transcripts, as mentioned earlier. Another realization is that the

design principles developed in DNA nanotechnology may pave the way for using novel, im-

proved polymers to program chemistry into the future. Despite its biological relevance and

the technologies that facilitate its use, DNA is not well-suited for all applications considered
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in the field. It is possible that analogous molecules (e.g. synthetic polymers) may one day

replace DNA in many of these technologies. Therefore, beyond its practical value in many

applications, the broader value of DNA rational design comes from its ability to provide us

with a first exploration of possible applications, where techniques for manipulating similar

polymers may be matured.
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Figure 1.1: Determination of thermodynamic parameters for predictive models of

DNA hybridization.

A. Using the nearest-neighbor model to predict duplex stability. The overall free energy of hy-

bridization of the duplex is the sum of all nearest-neighbor parameters included in the duplex

sequence. B. Baseline method for determination of overall duplex thermodynamics. Diagram is

based on Figure 2B in Mergny and LaCroix 2003, data shown is collected using high-resolution

melting.
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Figure 1.2: Forms of strand displacement.

A. Displacement due to end fraying. B. Toehold-mediated displacement. Domains with the same

color have the same or complementary sequence; hybridized regions are represented by colored

regions between strands. C. Toehold exchange. D. Remote toehold.
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Figure 1.3: Chemical computation: chemical reaction networks (CRNs) to strand-

displacement implementation.

A. CRN that encodes the addition function between species A and B, with species Y as output. B.

A deterministic CRN that encodes the maximum function between species A and B, with species

Y as output ([31]). C. Seesaw gate motif for implementing CRNs.
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Figure 1.4: In vitro transcription gate designs.

A. Multi-stranded transcription gate by Kim et al. B. Single-stranded hairpin transcription gate

by Kar and Ellington C. Tethered T7 RNAP design by Chou and Shih.
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Chapter 2

Repurposing next-generation sequencing platforms for

high-throughput profiling of DNA-based interactions1

Abstract. Next-generation sequencing (NGS) chips have been successfully repur-

posed as massively parallel platforms for mapping binding affinity of proteins of

interest to libraries of DNA or RNA targets. We explored the possibility of using

repurposed NGS platforms to map other biomolecular interactions - specifically,

DNA-DNA hybridization and polymerase-promoter activity - at scale. We found

that the size of Illumina MiSeq clusters limits the observable dynamic range to

4.24 kcal/mol in the best scenario, which is exceeded by many destabilizing nucleic

acid hybridization motifs, including multiple mismatches, larger bulges, and loops.

Using this platform, we were able to reproduce transcription activity rankings for

T7 promoter variants as reported by previous solution-based assays.

1This chapter includes original work by SSW. SSW received guidance from Ilya Finkelstein and Andrew

Ellington and funding for the project from Andrew Ellington. SSW would like to thank Stephen Jones, Jami

Kuo, Jim Rybarski, and John Hawkins for helpful discussions and technical support.
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2.1 Introduction

The thorough characterization of DNA and RNA hybridization has yielded sequence-

dependent models for predicting secondary structure. This in turn has enabled the structural

prediction of nucleic acid structures, including biologically potent RNAs (such as mRNAs,

lncRNAs, miRNAs, crRNA) and rationally designed components engineered for DNA nan-

otechnology. Beyond the basic Watson-Crick base pairings, the thermodynamics of structural

motifs such as bulges, loops, and dangling ends [164], as well as non-canonical interactions

like wobble base pairing [70], inosine base pairing [208], mismatches [164], and even un-

natural base pairing [91, 90] have been reported. Previous measurements of hybridization

stability have either utilized the inherent hyperchromicity of DNA and RNA of the duplex

to single-stranded transition (UV-Vis spectrophotometry) or the absorption of heat during

melting (isothermal titration calorimetry and differential scanning calorimetry). These meth-

ods balance the advantage of producing absolute thermodynamic parameters through direct

measurements with the disadvantages of being low-throughput and requiring large amounts

of material. As a result, investigations of interactions that scale combinatorially with the

features in question - for instance, multiple mismatches or mixed backbone modifications -

would quickly become intractable at these smaller scales.

For this reason, alternative high-throughput methods would facilitate the collection

of quantitative, predictive data, particularly for detailed models that include non-canonical

nucleic acid-nucleic acid interactions. DNA microarrays, which contain ssDNA libraries on

the order of thousands of variants, have been used to quantify the energetic impact and

associated nearest-neighbor free energy parameters of mismatches in DNA-DNA hybridiza-

tion [89]. Next-generation sequencing chips present a similar, larger-scale opportunity: each
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sequencing chip flow cell can present up to tens of millions of unique DNA sequences which

are spatially-addressable given positional data from its associated sequencing run. Previous

works have indeed repurposed Illumina chip-based platforms to profile protein-DNA interac-

tions, such as Gcn4-promoter affinity [137] or CRISPR-Cas target affinity [102], by assaying

the affinity of a protein of interest to a DNA library of millions of sequences all at once. In

fact, efforts have gone beyond mapping protein-DNA interactions to include RNA-protein

interactions by using the DNA library as a template for in vitro transcription and producing

a RNA library on the chip surface [20, 194].

Here, we investigated the feasibility of repurposing next-generation sequencing plat-

forms for high-throughput profiling of DNA-DNA hybridizations and RNA polymerase-

promoter activities. We expected that single-stranded probe-target binding would require a

comparatively simple experimental setup and that enzyme catalytic activities may be likewise

measurable if activity can be coupled to fluorescent signal intensity. We find that the speci-

fications of the Illumina MiSeq platform in theory limit its range of detection to association

reactions within a 4.24 kcal/mol range at optimal conditions, thus excluding significantly

destabilizing DNA-DNA hybridization motifs such as multiple mismatches or larger loop

(around length 6 or greater). Relevant RNA polymerase-promoter library interactions for

the T7 RNA polymerase, however, can be successfully assayed by the platform, and tran-

scriptional activities of promoter variants relative to the wildtype promoter sequence match

reported values from in vitro studies in the literature. Our findings suggest that repurposed

NGS flow cells can be valuable platforms for assaying protein-nucleic acid interactions at

incredibly large scale, but are not suited for profiling equally large sequence spaces in nucleic

acid-nucleic acid hybridization.
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2.2 Results

2.2.1 Limitations of hybridization profiling on a repurposed sequencing plat-

form

The Illumina MiSeq next-generation sequencing platform produces flow cells with

tens of millions of spatially-addressable clonal clusters up to 600 base pairs in length and

up to 1 micron in diameter [1]. Each cluster is produced by bridge amplification, which

increases fluorescence signals up to 3 orders of magnitude above single-molecule techniques,

by producing up to 1000 copies of the same sequence. After bridge amplification, clusters

consist of double-stranded duplexes in which one strand is covalently attached to the slide

surface and the other strand is its hybridized complement. Denaturation of the duplexes

transforms the surface of the MiSeq chip into an microarray-like platform containing surface-

immobilized single-stranded DNA strands (“targets”) organized by sequence into localized

individual clusters that bind a free-floating single-stranded probe.

Hooyberghs et al. have described the relationship between the fluorescence signal in-

tensity observed from probe binding on a DNA microarray to the free energy of hybridization

between the probe and target using the Langmuir model [89]:

I = Aθeq =
Ace−∆G/RT

1 + ce−∆G/RT

where I, the observed intensity, is proportional to θeq, the fraction of a cluster that

is bound at equilibrium, by a constant scaling factor A; c is the concentration of the probe;

∆G is the free energy of hybridization; R is the gas constant; and T is the temperature at

equilibrium. Assuming that the system is far from chemical saturation at equilibrium (i.e.
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only a small fraction of surface targets are hybridized, ce−∆G/RT � 1 ), this approximates

to

I = Ace−∆G/RT

Solving for ∆G gives

∆G = −RT ln

(
I

Ac

)
The energetic penalty of a mismatch is defined as the difference in the probe’s free

energy of binding to a mismatched target (∆Gmm) compared to a perfectly matching target

(∆Gpm) and can be experimentally observed as the ratio of their signal intensities (referred

to from here as the “intensity ratio”)

∆∆G = ∆Gmm −∆Gpm = −RT ln

(
Imm

Ac

)
+RT ln

(
Ipm
Ac

)
= RT ln

(
Ipm
Imm

)

Illumina MiSeq clusters contain between one and several thousands of copies of a

single sequence. This suggests that the largest signal intensity ratio possible is on the order

of 1000 (i.e. in the mismatched target cluster, <10 targets are bound to the probe while in the

perfect target cluster >1000 targets are bound). The detectable range of energetic penalties

varies with the logarithm of this ratio; at a poor intensity ratio of 10, only interactions less

than 1.41 kcal/mol from the perfect target-probe interaction can be measured, while at the

best intensity ratio of 1000, the dynamic range is increased to a ∆∆G of 4.24 kcal/mol from

perfect target-probe (Figure 2.1A). The ∆∆G of a single internal mismatch ranges from 1.86

to 5.97 kcal/mol in solution-based studies at 37◦C [164]. Assuming it is possible to achieve the
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highest intensity ratio of 1000, 140 out of 192 possible internal single mismatch triplets have

energetic penalties that are within the theoretically detectable range at 37◦C (Figure 2.1B).

Beyond mismatches, some motifs involving imperfect hybridization have reported energetic

penalties that fall within the detectable range; for example, loops (internal, bulge, or hairpin)

can range from 2.9 to 6.6 kcal/mol at 37◦C [164]. Increasing the incubation temperature

can reduce the magnitude of energetic penalties, thereby fitting more interactions within

the limit of detection, since the ∆G of duplex formation is negatively linear with respect to

temperature; for instance, at an incubation temperature of 50◦C, up to 160 single internal

mismatches are within the best detection range (Figure 2.1B).

The value of repurposing NGS platforms lies in the ability to observe millions of inter-

actions in parallel. This is particularly advantageous when the sequence space of interactions

is very large, warranting such high-throughput methods. Given that the penalty of a single

mismatch or other destabilizing motif already spans a large portion of the detectable range,

however, most hybridization interactions involving more than one destabilizing motif are

beyond the limit of detection on this platform. Further, contiguous mismatches are likely

to form bulges and result in penalties greater than the additive impact from each single

mismatch [164].

To experimentally confirm this limitation, we used a repurposed NGS platform adapted

from the CHAMP platform [102] to measure the energetic penalties of mismatches. Similar

to CHAMP, an Illumina MiSeq flow cell containing a library of target sequences (in our

case, single and double mismatches as well as several negative controls; Figure 2.2A) was

collected after a sequencing run and first denatured and washed to produce a single-stranded

surface-bound library with minimal fluorescent background. Unlike CHAMP, however, we
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did not regenerate the strand complements. Digoxigenin-labeled probe strand was added at

100 nM to the flow cell, and the cell was sealed and incubated at 50◦C for 24 hours. Follow-

ing incubation, bound probes were visualized using fluorophore-conjugated anti-digoxigenin

antibodies and imaged by TIRF microscopy (Figure 2.2B). The measured intensities of the

negative control targets were averaged and considered as the background signal. As ex-

pected, most single mismatches were distinguishable from the background and had observed

intensities that correlated with the energetic penalty as predicted by parameters reported in

the literature (R2 = 0.83) [164]. The majority of double mismatches (excluding contiguous

mismatches, for which thermodynamic parameters are unavailable) were compressed towards

the lower end of the detection range, being only slightly above background.

2.2.2 Profiling T7 RNA polymerase transcription activity for a library of syn-

thetic promoters

Despite their limitations in measuring nucleic acid-only interactions, repurposed NGS

platforms have been used to map in vitro protein-nucleic acid affinities with great success,

including protein-DNA [137, 102, 98] and protein-RNA interactions [20, 194]. We asked

whether interactions beyond binding affinity, such as transcription activity, could be stud-

ied using this platform. We considered the T7 RNA polymerase, a single subunit DNA-

dependent RNA polymerase that is highly specific in its recognition of its 17-nts promoter

sequence [28, 180]. T7 RNAP is an invaluable tool in both molecular biology (e.g. for pro-

ducing RNA transcripts in vitro) and synthetic biology (e.g. for driving gene expression for

the production of proteins), where a library of promoter variants with known transcription

activities could allow transcription to be quickly tuned across a range of expression levels,
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which is particularly helpful for expressing toxic proteins or building multi-gene circuits.

Because it contains only a single subunit, T7 RNAP is both easily used and easily studied.

Highly related RNAPs (such as those from T3 or SP6) are similarly specific for their respec-

tive cognate promoter sequences, and orthogonal pairs of T7 RNAP-promoter interactions

have been engineered [190, 133]; this suggests that the landscape of polymerase-promoter

interactions is non-convex, and an exploration of the promoter sequence space may reveal

variants not observed in enrichment-based selection assays.

We randomized the -12 to -7 region of the T7 promoter to produce a 6N promoter

library (Figure 2.3A). The specificity loop of T7 RNAP recognizes the promoter through

contacts between residues of its specificity loop and the -12 to -8 region promoter region

[30]. Mutations to the promoter sequence at this region alters promoter recognition and

consequently impacts transcription activity [157]. Our library fully covered all 4096 possible

variants, with nearly every variant represented in 100 or more reads; in addition, as negative

controls for transcription, a variant with a scrambled sequence in place of the T7 promoter

was added. To assay protein activity as a function of RNA produced, a TerB sequence

(Tus protein binding site) was inserted between the P7 and SP2a adapter sequences, and

a template for the MS2 hairpin sequence was included. Once Tus protein is added to the

flow cell and bound to the TerB site, transcribing T7 RNAPs stall at the Tus-TerB location,

which in turn prevents the release of the elongating strand and ensures that transcripts from

each promoter variant are location addressable (Figure 2.3B) [20, 194]. Fluorescently-labeled

MS2 coat protein is added to visualize the amount of RNA corresponding to a cluster through

association with transcribed tethered MS2 RNA hairpins, with signal intensity as a measure

of overall transcriptional activity.

38



The highest measured intensity was observed in the wildtype promoter sequence

(CGACTC in the randomized region) (Figure 2.3C). Weighing each variant by its average

measured intensity and finding a “weighted consensus” reveals the wildtype sequence (Fig-

ure 2.3D). To assess the accuracy of the repurposed NGS chip platform for profiling in vitro

transcription activity for various promoter sequences, we compared the relative transcription

activities observed on our platform to those reported in three previous studies that measured

transcription activity using either solution-based [154] or NGS-based methods [147, 113]. Be-

tween our study and each of the three literature studies, our measured transcription activities

correlated well with the literature-reported activities for mutually-included variants (R2 of

0.84 or higher) (Figure 2.4). Two higher-activity promoter variants were common between

our study and all three previous studies, and four higher-activity variants were common to

our study and two previous studies (Figure 2.4A). In all datasets considered, these variants

ranked among the top below wildtype. The repurposed NGS platform was able to mea-

sure differential activity between the mutually-included variants, whereas the distribution

of measured activities for these variants were below the detection limit for methods used

in other studies (Figure 2.4B and C). These results suggest that the repurposed NGS chip

platform can be used to measure the relative in vitro activities of promoter variants for T7

RNA polymerase at a large scale.

2.3 Discussion

We observed that NGS-based affinity mapping platforms are suited to the study of

protein-DNA interactions for a larger sequence space than for DNA-DNA interactions. This

suggests that, given the small range of detection, variations in protein-DNA complex stability
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that result from DNA sequence mutation are generally smaller than variations in DNA duplex

stability arising from similar mutations. In other words, DNA-protein interactions may

tolerate mutations better than DNA-DNA hybridization. This is not surprising considering

that DNA duplexes are stabilized by protein binding, and energetic penalties due to slightly

imperfect contacts between residues and minorly mutated dsDNA are relatively small in

comparison to the stability of the protein-DNA complex. Specifically in the case of T7 RNAP

initiation, while the thermodynamic impacts of specific promoter mutations have not been

documented, the scale of interaction energies involved for transcription may shed some light

on the impact of promoter mutations. Melting the initiation region of the duplex promoter

requires unwinding of the helix and bending the single promoter strands and thus takes

considerable energy; thus, it is estimated that extensive interactions between the polymerase

and single-stranded portions of the promoter generate up to 68 kcal/mol that are used

towards melting the promoter [214]. Part of this energy may come from polymerase binding,

which is estimated at -13.3 kcal/mol for binding to the wildtype [189]. A mutated specificity

region (-12 to -8) is unlikely to change the energy required to melt the initiation region (-4 to

+2) to form the transcription bubble, suggesting that if T7 RNAP is capable of association

with a mutated sequence, it will likely be capable of initiation.

The quantity measured with our platform, transcription activity, is a combination of

multiple rates, including association, dissociation, initiation, promoter clearance, abortive

cycling, elongation, and processivity [30, 214, 215, 54]. An advantage of surface-based ap-

proaches over solution-based methods is that with surface-based approaches it may be pos-

sible to individually study some of these factors. For example, association and dissociation

may be measured as the amount of fluorescently-labeled polymerase bound, initiation by the
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incorporation of fluorescently-labeled NTPs with one NTP depleted, and elongation by load-

ing a single RNAP per strand for single turnover and measuring MS2 hairpins transcribed

from a template of concatenated MS2 sequences.

Although the activities we measured matched reported activities from solution-based

methods, it is still valuable to validate the findings using other experimental modalities,

particularly for novel characterizations, since steric hindrance effects due to crowding at the

flow cell surface may affect binding and activity. In vivo studies should be performed to

confirm whether the interaction is robust in a cellular context. Chip-based high-throughput

profiling techniques will best benefit protein-nucleic acid profiling tasks that require a large

nucleic acid sequence space. Towards the future, it may be possible to use surface-addressable

DNA (or RNA) clusters to map the affinities of a library of nucleoprotein variants to singular

DNA or RNA probes, or even to express DNA sequences as peptide libraries for mapping

protein-peptide or target-peptide affinity. This latter application could complement in vivo

eukaryotic solution-based display platforms for high-throughput protein-target interaction

assays such as yeast surface display [72] or mammalian cell display [95, 179] by providing

biochemical insight on individual variants through large scale in vitro binding assays for

titrations of target molecules.

2.4 Materials and Methods

Oligonucleotides and reagents. The target library for DNA-DNA mismatch hy-

bridization was purchased as a custom library from CustomArray. All other oligonucleotides,

including the T7 promoter library, fluorescent probes, digoxigenin probes, and primers, were
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purchased as custom oligonucleotides from IDT. Next-generation sequencing was performed

on the Illumina MiSeq platform using either a 2x75, 2x150, or 2x250 paired end reagent kit.

Unless otherwise stated, all chemical reagents were purchased from Sigma Aldrich and all

buffers and enzymes were purchased from NEB.

Library preparation for next-generation sequencing. The custom oligonu-

cleotide T7 promoter library was PCR amplified using Q5 High-Fidelity DNA polymerase

(NEB, M0491S) in 1x Q5 Reaction Buffer (NEB, B9027S) with a final concentration of 200

uM of each dNTP (ThermoFisher, R0181) and 400 nM of the forward and reverse primers

on a PCR thermocycler with the following protocol: 3 min initial melting at 98C, followed

by 10 cycles of 30 sec melting at 98C, 30 sec annealing at 67C, and 30 sec extension at

72C, followed by a 3 min final extension at 72C. After amplification, the PCR products were

loaded onto a 1.2% agarose gel (NuSieve GTG, Lonza BioScience) and gel purified using a

QIAquick Gel Extraction Kit (Qiagen) following manufacturer’s instructions with the fol-

lowing exception: gel fragments were incubated for at least 20 minutes at 60C in Buffer QG

and the DNA product was washed 3x with Buffer PE prior to elution in nuclease-free water.

The finished library was then submitted to the UT Genome Sequencing Analysis Facility

(GSAF) for next-generation sequencing. Because both the DNA-DNA mismatch and T7

promoter libraries both have low base diversity, to ensure that the final sequencing chip does

not run into downstream analysis issues due to base diversity, an additional sample library

prepared from HeLa genomic DNA (NEB, N4006) was added to represent approximately

50% of the final reads of all runs.

DNA-DNA hybridization with CHAMP. The target probe sequence was de-

signed to have a GC-content close to 50%, a Tm between 40C and 50C, and have a G:C
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pairing on both 5’ and 3’ ends. Target sequences and subsets of target sequences included

in the DNA library were assessed to find appropriate targets.

TIRF microscopy and microfluidics setup for CHAMP can be found in [102]. Unless

otherwise specified, all washing and loading steps were performed at a flow rate of 100

µl/min. Following NGS, the physical chip was washed with an initial denaturing solution of

0.1 M NaOH (300 µl) and 1X TE (300 µl). Resetting the chip between experiments consisted

of denaturation and removal of complementary strands using a 5 minute incubation in 60%

DMSO [203] and a 300 µl wash in 1X NGS Wash Buffer (0.3X SSC, 0.1% Tween-20), followed

by a proteinase K treatment consisting of incubating the channel for 45 minute at 42C in a

2 mg/ml RNA grade proteinase K solution (ThermoFisher, 25530049) in 1X TE and a 500

µl wash in 1X NGS Wash Buffer.

To perform hybridization experiments, the chip and its stage adapter were placed

into a plate incubator with the ends of the tubing adapter sealed to prevent evaporation.

Once the chip was equilibrated to the correct temperature, it was washed with 500 µl 1X

NNE Buffer (0.5 M NaCl, 10 mM Na2HPO4, 1 mM EDTA, pH 7.0), after which probe mix

(100 nM Target-Dig probe; 1X NNE buffer; 0.005% BSA, ThermoFisher; 1 µg/ml salmon

sperm DNA, FisherScientific) heated to the appropriate temperature was loaded onto the

chip and incubated. After the incubation period, the channel was washed with 1X NNE,

the chip and attached stage adapter were removed from the incubator and onto the TIRF

microscope. Primary (Anti-Dig rabbit, Invitrogen, 9H27L19) and secondary (Anti-Rabbit

goat 647N, Sigma 40839) antibodies were each sequentially loaded onto the chip, incubated

for 10 minutes at room temperature, and unbound antibodies were washed from the chip

with a 5 minute NGS Wash Buffer flow step. The chip was illuminated with a 633 nm laser
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(Ultralasers) at 100 mW and imaged at room temperature.

Protein purification. Preparation of Flag-Tus. The 6xHis-StrepTag-SUMO-Flag-

Tus coding sequence was previously cloned into pET-19 plasmid by members of the Finkel-

stein Lab. The purified plasmid was sequence verified by Sanger and transformed into chem-

ically competent BL21 (DE3) cells, and plated on LB agar with carbenicillin. An overnight

culture was prepared in 1X LB media at 37C. The following day, subcultures were prepared

using a 1:100 dilution of the overnight culture into 1X Superior Broth (SB) media contain-

ing antibiotics, shaken at 250 rpm at 37C in Erlenmeyer flasks, and grown until reaching

OD600 of 0.6. The protein was then induced using IPTG (0.1 M IPTG final concentration

in culture) and shaken at 37C for 4 hours. A 2 ml aliquot of the induced culture was taken

and miniprepped (Qiagen Miniprep Kit, manufacturer’s instructions) and Sanger sequenced

to confirm the presence of the plasmid and to check that no deleterious mutations to the

protein of interest had occurred. Cells were pelleted and frozen at -80C until use.

To purify the protein, frozen pellets were resuspended in Lysis Buffer, which consists

of 50 mM sodium phosphate pH 7.5, 100 mM NaCl, 1 mM EDTA, 10% glycerol, 0.2 mg/ml

lysozyme, 1 mM DTT, and 1 tablet cOmplete Protease Inhibitor Cocktail (Millipore Sigma)

per 50 ml of buffer. Cells were lysed by sonication (Fisher Scientific Sonic Dismembrator,

Amplitude = 75, total processing time = 1:30, pulse ON = 0:15, pulse OFF = 0:45) and

ultracentrifuged at 35k rpm for 40 minutes at 4C. The resulting supernatant was purified

by affinity chromatography in a Strep-Tactin (Iba Life Sciences) gravity column with 3 ml

total resin volume. The column was equilibrated with 20 column volumes (CVs) of Lysis

Buffer, after which the clarified supernatant was applied to the column. Bound protein was

washed using 20x CV Wash Buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA,

44



1 mM DTT, 20% glycerol), eluted in 20 mM Elution Buffer (2.5 mM d-desthiobiotin, 50

mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, 2 mM DTT, 20% glycerol), manually

fractionated and concentrated with an Amicon Ultra-15 centrifugal unit (Millipore Sigma) to

approximately 1 ml. Protein tags were cleaved using SUMO protease (purified by members

of Finkelstein Lab) at approximately 3 uM final concentration in a rotator overnight at 4C.

Cleaved Flag-Tus protein was isolated using a HiLoad 16/600 Superdex 200 pg size exclusion

column (SEC) (Cytiva). The sample was quantified by SDS-PAGE and stored in SEC Buffer

(50 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM DTT, 10% glycerol) in 10 ul aliquots at -80C

until use.

Preparation of MCP-488. The 6xHis-SUMO-MCP-SNAPf coding sequence was pre-

viously cloned into pET-19 plasmid by members of the Finkelstein Lab. Preparation of the

pellet was identical to the preparation of Flag-Tus.

Procedures for pellet resuspension, sonication, ultracentrifugation, and gravity col-

umn purification were as previously described for Flag-Tus, except for the compositions of

Lysis Buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 1 mM EDTA, 0.1% Tween-20, 5% glyc-

erol, 1 mg/ml lysozyme, 0.0025 U/µl DNase I, 1 mM DTT, and 1 tablet cOmplete Protease

Inhibitor Cocktail per 50 ml buffer), Gravity Column Wash Buffer (50 mM HEPES pH 7.4,

500 mM NaCl, 1 mM EDTA, 5% glycerol), and Gravity Column Elution Buffer (10 mM

d-desthiobiotin, 50 mM HEPES pH 7.4, 500 mM NaCl, 1 mM DTT, 10% glycerol). Follow-

ing Strep-Tactin purification, the eluted sample was concentrated, and both SUMO protease

and SNAP-Surface 488 (NEB, S9124S) was added to the concentrated sample which was

gently agitated overnight at 4C covered by foil. The following day the cleaved and labeled

sample was purified using the SEC and washed with SEC Wash Buffer (50 mM Tris-HCl pH
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7.5, 500 mM NaCl, 2 mM DTT, 10% glycerol). Protein concentration was quantified and

dye labeling was confirmed through SDS-PAGE. Samples were stored in 20 ul aliquots at

-80C until use.

In vitro transcription assays on CHAMP. TIRF microscopy and microfluidics

setup for CHAMP can be found in [102]. Unless otherwise specified, all washing and loading

steps were performed at a flow rate of 100 µl/min. Because a TerB sequence is inserted

immediately following the SP2a adapter, the first 6 nts of the TerB sequence were used as

the i7 index for NGS (AATTAG). Following NGS, the physical chip was washed with an

initial denaturing solution of 0.1 M NaOH (300 µl) and 1X TE (300 µl). To regenerate

complements to produce a double-stranded promoter library, a primer mix containing 500

µM each P7 primer and SP2b-complementary PhiX-digoxigenin primer in 1X Hybridization

Buffer (5X SSC, 0.1% Tween) was first loaded into the chip and incubated on the heat block

with the following protocol: 5 minutes at 85C, 30 minutes ramp down from 85C to 60C, 10

minutes ramp down from 60C to 40C, and 10 minutes at 40C with simultaneous 1X Wash

Buffer flow (0.3X SSC, 0.1% Tween). After primer annealing PCR mix (0.1 U/µl Klenow

Fragment exo- DNA polymerase, M0212L; 25 uM each dNTP, ThermoFisher; and 1X NEB

Buffer 2) was loaded into the chip, incubated 30 minutes at 37C. To test alignment for

the chip, primary antibody (Anti-Dig rabbit, Invitrogen, 9H27L19) and secondary antibody

(Anti-rabbit Atto 488 Goat, Invitrogen, A-11008) was each sequentially added at 1 µg/ml,

incubated in the chip for 10 minutes at room temperature, and washed with 1X NGS Wash

Buffer for 5 minutes, after which the chip was imaged in the blue channel at 10 mM. The

chip was then treated with Proteinase K as described earlier. The flow system was then

switched to 1X Running Buffer (40 mM Tris-HCl pH 7.5, 150 mM NaCl, 6 mM MgCl2, 1
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mM DTT, 0.1% Tween-20, 0.2 mg/ml BSA) and kept at 37C. The chip was washed for 5

minutes.

To assay in vitro transcription activity for the promoter library, Flag-Tus mix (500

nM Flag-Tus in 1X Running buffer) was loaded into the chip and incubated for 30 minutes.

After washing with 1X RNAPol Reaction Buffer (B9012S), the T7 transcription mix (2 U/µl

T7 RNA polymerase, M0251S; 200 uM each NTP; 5 mM DTT; 1X RNAPol Reaction Buffer)

was loaded and incubated for 30 minutes, followed by a 5 minute wash with 1X Running

Buffer. MCP mix was loaded (500 nM MCP-488 in 1X Running Buffer) and incubated for

30 minutes. The chip was then washed with 150 µl of 1X Running Buffer at 50 µl/min,

illuminated at 10 mW with a 488 nm laser (Coherent), and imaged at room temperature.

Data analysis. TIRF images were aligned to positional and sequence data included

in the fastq files associated with the sequencing run using the alignment code developed

for the CHAMP platform [102] (github.com/hawkjo/champ). Literature reported dG values

for mismatched DNA-DNA hybridization was calculated from nearest-neighbor parameters

reported in [161] for matching base pairs and [164] for mismatched base pairs and adjusted

to the experimental sodium concentration.
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Figure 2.1: Theoretical limits of profiling with the repurposed Illumina MiSeq

flow cell.

A. Dynamic range of energetic penalties relative to perfect match (pm) that are detectable for

different ratios of perfect to mismatched (mm) observed intensities for an incubation temperature

of 37◦C. B. Number of single mismatch triplets with energetic penalties within the detectable range

for an intensity ratio of 10, 100, and 1000. Lower plots show slices at 37◦C and 50◦C of all 192 single

mismatch triplets arranged in increasing order of energetic penalty. Fractions show the number of

triplets within the detectable range at a given intensity ratio; at 37◦C the fraction at a ratio of 10

is omitted as no triplets are theoretically detectable. All values are calculated at [Na+] = 1 M;

note that different sodium concentrations will not change the energy penalty [161].
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Figure 2.2: Experimental profiling of mismatched DNA-DNA hybridization inter-

actions on a repurposed MiSeq platform.

A. NGS library design and types of mismatches considered. Contiguous mismatches were excluded

from the library. B. Workflow with CHAMP for profiling mismatched hybridization and measured

energetic penalties due to mismatches using the CHAMP platform. C. Experimentally observed

typical mean signals for each type of target dynamic range.
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Figure 2.3: Experimental profiling of T7 RNA polymerase transcription activity

as a function of polymerase-promoter interactions using CHAMP.

A. Breakdown of single-subunit polymerase family phage promoter sequences and NGS chip library

design B. Experimental protocol and setup for T7 RNAP in vitro transcription on the CHAMP

platform. C. Transcription activity as a function of promoter sequence measured by background-

subtracted intensity. D. Specificity sequence weighted by transcription activity.
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Figure 2.4: Correlation of promoter variant relative activities to wildtype as mea-

sured using CHAMP to reported relative activity from the literature.

A. Selected variants with the highest observed activity as determined by CHAMP. B. Correlation

to Raskin et al. PNAS 1993 [154]. C. Correlation to Komura et al. PLOS ONE 2018 [113]. This

dataset does not contain variants 1 (CAACTC) and 3 (GGACTC) D. Correlation to Patwardhan

et al. Nature Biotechnology 2009 [147].
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Chapter 3

Developing predictive hybridization models for

phosphorothioated oligonucleotides using

high-resolution melting1

Abstract. The ability to predict nucleic acid hybridization energies has been

greatly enabling for many applications, but predictive models require painstaking

experimentation, which may limit expansion to non-natural nucleic acid analogues

and chemistries. We have assessed the utility of dye-based, high-resolution melting

(HRM) as an alternative to UV-Vis determinations of hyperchromicity in order

to more quickly acquire parameters for duplex stability prediction. The HRM-

derived model for phosphodiester (PO) DNA can make comparable predictions to

previously established models. Using HRM, it proved possible to develop predictive

models for DNA duplexes containing phosphorothioate (PS) linkages, and we found

1This chapter is adapted from a manuscript by Wang SS, Xiong E, Bhadra S, and Ellington AD (2022).

SSW and EX shared first authorship. SSW and EX conceived the project and performed the melting

experiments. SSW designed the sequences and performed all analyses. EX developed the protocol and

performed the CHA experiments. SB and ADE provided mentorship. ADE provided funding. SSW and

ADE wrote the manuscript.
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that hybridization stability could be predicted as a function of sequence and back-

bone composition for a variety of duplexes, including PS:PS, PS:PO, and partially

modified backbones. Individual phosphorothioate modifications destabilize helices

by around 0.12 kcal/mol on average. Finally, we applied these models to the design

of a catalytic hairpin assembly circuit, an enzyme-free amplification method used

for nucleic acid-based molecular detection. Changes in PS circuit behavior were

consistent with model predictions, further supporting the addition of HRM mod-

eling and parameters for PS oligonucleotides to the rational design of nucleic acid

hybridization.

3.1 Introduction

The programmability of nucleic acids for biotechnology and nanotechnology appli-

cations is based on the highly predictive thermodynamic properties of DNA and RNA hy-

bridization, which can be well-approximated by the nearest-neighbor model [41, 48, 193, 51].

In consequence, the stability of a given duplex can generally be accurately predicted from its

sequence [161, 162, 62, 199, 183, 78, 182]. Typically, nearest-neighbor model parameters for

nucleic acids are derived using UV-Vis spectrophotometry, relying on the hyperchromicity of

single-stranded DNA and RNA to capture the transition from duplex to denatured strands,

and consequently fit melting temperatures and other thermodynamic values pertaining to the

duplex. While such hyperchromicity methods can produce thermodynamic parameters that

are broadly applicable to various predictions because they result from direct measurements of

duplex melting, the material cost and low throughput of UV-Vis spectrophotometry can be

prohibitive, particularly in the case of expensive or precious non-canonical oligonucleotides.
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As a result, while nearest-neighbor parameters have been found for some non-canonical bases

[91] and unnatural backbones [107, 25], many other broadly employed chemical modifications

to DNA and RNA have yet to be similarly adapted to predictive models. The rational design

of nucleic acid hybridization for both structure and function is therefore generally limited to

the use of unmodified oligonucleotides.

High-resolution melting (HRM) represents a higher throughput and more cost-efficient

method for quantifying duplex stability and consequently deriving predictive parameters. In

this method, sequence non-specific intercalating dyes such as EvaGreen or LC Green obvi-

ate the need for custom fluorescent probes or fluorophore-quencher modifications, and can

be carried out in 96-well plate formats with volumes on the order of 10 µl and as little as

pmoles of material. HRM has been widely employed in molecular diagnostics to rapidly dis-

criminate between near-identical sequences through shifts in melting temperatures, and has

enabled applications such as single-nucleotide polymorphism genotyping and quantification

of mosaicism [197, 58].

In this study, we assessed the feasibility of HRM as a method for determining the

sequence-dependent thermodynamic parameters for phosphorothioated (PS) oligonucleotides.

We designed sets of phosphodiester (PO) DNA oligonucleotide duplexes with sequences that

maximally spanned the space of nearest-neighbor nucleotide pair parameters and determined

the Tm of each duplex at various concentrations using HRM with EvaGreen intercalating dye.

We fitted transition thermodynamic parameter enthalpy (∆H), entropy (∆S), and free en-

ergy (∆G) to the collected Tm values using Van’t Hoff analysis and then derived approximate

nearest-neighbor parameters using singular value decomposition. While a potential drawback

to using HRM to characterize nucleic acid duplex thermodynamics is the introduction of sys-
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tematic errors due to binding interactions with intercalating dyes, we find that it is possible to

apply a linear correction to HRM-derived model predictions (i.e. ∆GAdjusted-37 = ∆GHRM-37 -

3.73 kcal/mol + 0.19 kcal/mol/base pair× sequence length) and thereby generate predictions

comparable to those made by models derived from hyperchromicity data. Using HRM, pre-

dictive models for DNA duplexes containing PS modifications were fitted, PS modifications

were incorporated into a DNA-based amplification circuit and changes to circuit behavior

that corresponded to predictions were observed. HRM methods can therefore potentially

accelerate the use of nucleic acid modifications in rationally designed oligonucleotides for a

variety of applications, including for antisense oligonucleotide design.

3.2 Results

3.2.1 Derivation of thermodynamic parameters with high-resolution melting

To derive approximate thermodynamic parameters using HRM, we designed a set of

sequences that achieved the maximum number of linearly independent sequences possible

given constraints between parameters [78]. To evenly represent all parameters in sequence

space, we designed 3 sets of sequences that each attained maximum rank in the stacking

matrix (i.e., the combinations of nucleotide pairs needed to fully cover the parameter space)

and combined these sets to produce a total of 66 sequences. The sequences ranged between

12 and 30 bases in length, with predicted Tm values between 50◦C and 80◦C, as this suited

the temperature range of the qPCR machine used for analysis (37◦C to 98◦C). Sequences

were also designed to have secondary structure that were less stable than -1 kcal/mol at

37◦C and 0.5 M NaCl, as calculated by NUPACK [218].
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We performed HRM with an EvaGreen intercalating dye on thermally annealed du-

plexes that comprised each sequence in the designed set and its complement, at concentra-

tions ranging from 1 µM to 20 µM. For each concentration, the Tm was determined as the

peak in the −dF/dT of the melting curve. We applied linear regression to the Tm series using

the Van’t Hoff equation and thereby determined ∆H, ∆S, and ∆G50 values (after adjusting

to 1 M NaCl as reported by [161]) (Fig 3.1). In general, R2 values were greater than 0.95.

Experimentally derived, non-salt-adjusted ∆H, ∆S, and ∆G50 values are reported in the

Supplemental Information.

Parameters for ∆H, ∆S, and ∆G50 for fitted PO-PO internal nucleotide pairs and

terminal nucleotides are shown in Table 3.1. Since duplexes were predicted to have melting

temperatures within a 50-80◦C range, the reported ∆G was extrapolated to 50◦C (∆G50)

to minimize the impact of heat capacity changes on unfolding. Although errors (standard

deviation) for fitted ∆H and ∆S parameters were high, the fact that ∆H and ∆S are

highly correlated led to much smaller errors for the derived ∆G parameters (which rely on

entropy-enthalpy compensation) [163].

Parameter values from the HRM-derived model were on average higher (i.e. less stabi-

lizing) than values reported in previous nearest-neighbor models. This is due to concentration-

dependent interactions with the dye [173]; in general, while the dye stabilizes the duplex and

therefore increases the measured Tm, the magnitude of the increase depends on the ratio

of dye to duplex. We therefore measured Tm at different dye concentrations for the same

duplex concentrations and indeed observed that the shift in Tm varies by dye/duplex con-

centration ratios (Fig 3.9), resulting in a larger upward shift to the calculated ∆G for lower

dye/duplex ratios. To apply a correction for dye effects, we reasoned that the strength of the
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effect should correlate with the number of intercalation sites on the duplex, which in turn

is a function of overall duplex length. We selected a total of 16 duplexes whose ∆G values

had been previously calculated from hyperchromicity measurements, ranging from 10 to 16

nucleotides in length [162, 183, 19, 143]. We avoided sequences containing homopolymer runs

greater than 4 bases, as our own sequence designs originally excluded these. We used ∆H

and ∆S parameters from our HRM model to predict ∆G37 of each sequence (∆G37-HRM)

and fitted a linear length-dependent correction that adjusted this value to match as closely

as possible reported values extracted from melting as assessed via hyperchromicity. Uncor-

rected ∆G37-HRM predictions were consistently higher (i.e. less stable) than the reported

value. An equation to correct for dye intercalation, ∆GHRM + A × SequenceLength + B,

was fitted to minimize the residual sum of squares (RSS) value between predicted and re-

ported values, resulting in values 0.19 and -3.73 kcal/mol for A and B, respectively. The

corrected model had a RSS of 12.44 compared to 7.25 for previously established hyper-

chromicity models [161], a great improvement over the uncorrected model, which had a RSS

of 54.36 (Fig 3.2). These results show that, with some simple adjustments, HRM can be

used to build predictive models for approximating duplex stability, and potentially provides

a high-throughput and cost-efficient route to characterize novel nucleic acid duplexes that

otherwise lack sequence-dependent models.

3.2.2 Predictive models for duplexes with fully-PS strands

Having proved the basic method’s applicability, we attempted to establish approx-

imate models for duplex stability with DNA strands containing entirely phosphorothioate

(PS) linkages, for which sequence-dependent parameters had not been previously determined.
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We anticipated that PS duplexes should be well-approximated by nearest-neighbor models

since the thiol modification does not alter the structure of nucleobases and base-stacking

has been shown to be the major energetic contributor to helix stability [41, 48]. While

our study used non-stereospecific PS oligonucleotides, the different properties of the Rp and

Sp-stereoisomers have been shown to have relatively minor impacts on duplex stability, es-

pecially in comparison to the impact of sequence composition [23].

We studied two types of duplexes: a PS DNA strand paired with an opposing PS

DNA strand (PS-PS), and a PS DNA strand paired with a PO DNA strand (PS-PO). Our

sequence sets included the same 66 sequences described previously for PO-PO. Because PS-

PO duplexes are hybrid duplexes that are not “symmetrical” about the base pairing axis

(unlike PO-PO and PS-PS), a larger set of parameters was needed, since no nucleotide pair

was redundant. This “asymmetrical” model contained a total of 16 internal nucleotide pair

parameters and 8 terminal nucleotide parameters (Fig 3.7). We again performed leave-

one-out cross-validation to compare the fit of the symmetrical model with and without

terminal parameters for PS-PS duplexes (Fig 3.10), and the asymmetrical model with and

without terminal parameters for PS-PO duplexes (Fig 3.11). As was previously observed

for PO-PO duplexes, the inclusion of the terminal parameters significantly improved Tm

prediction accuracy (RMSE of 3.04◦C to 1.60◦C for PS-PS and 2.84◦C to 1.73◦C for PS-

PO). Addition of terminal parameters largely improved ∆G prediction in PS-PS (RMSE of

0.69 kcal/mol to 0.38 kcal/mol), but not in PS-PO (0.63 kcal/mol to 0.62 kcal/mol). Fitted

parameters for the symmetrical model for PS-PS and for the asymmetrical model for PS-

PO duplexes are shown in Table 3.2 and Table 3.3, respectively. Terminal parameters are

clearly important inclusions to HRM-derived duplex stability models for accurate prediction
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of thermodynamic properties such as ∆G and Tm. Interestingly, we observed an increase

in stability of the terminal parameters as the duplex included more fully PS strands: an

average of 0.51, -0.52, and -1.25 kcal/mol for each terminal nucleotide for PO-PO, PS-PO,

and PS-PS, respectively. This could indicate that although sequence composition is a key

determinant of duplex stability in all 3 backbone conditions, it has a smaller impact on

overall duplex stability in PS-PS duplexes than in PO-PO and PS-PO duplexes, possibly

due to global helix destabilization by extensive phosphorothioation.

3.2.3 Predictive models for duplexes with partially phosphorothioated strands

Next, we investigated how to best model the thermodynamics of duplexes containing

strands that contain a mix of PO and PS linkages. To increase the generality of our methods,

we selected 2 new sequences unrelated to the previous 66 we had used and designed a set

of partially PS-modified strands for each sequence ranging from 1 to 9 modifications. We

combined these partial-PS strands with either fully-PO or fully-PS complement strands to

produce 10 duplexes that varied in the number of total PS modifications: from 0 (i.e. two

fully PO strands); to 1, 4, 9, and 19 (i.e., a fully PO top strand with a fully PS bottom

strand and vice versa); and ultimately to 20, 23, 28, 38 (i.e., two fully PS strands). The ∆G

values of each partially-modified duplex were once again experimentally determined using

HRM at a range of concentrations. To predict the ∆G of duplexes with partially-modified

strands, we used the parameters from models fitted without terminal parameters, since

individual modifications likely have unique impacts on global stability, and our terminal

parameter models were based on fits for the global stability of duplexes containing fully

phosphorothioated strands.
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Comparing the measured and predicted ∆G values, we found that the model predicted

the stability of the partially-PS duplexes fairly well, resulting in an R2 of 0.94 and 0.82 for

the two sequences tested (Fig 3.3A). Predictions were more accurate for duplexes in which

fewer than half of all linkages were PS. Across all sequences in our set, we found that PS

linkages resulted in an energetic difference of 0.115 ± 0.04 kcal/mol per modification, on

average (Fig 3.3B).

The stabilities of partially-modified duplexes can thus be approximated in a sequence-

dependent manner by nearest-neighbor type models, with a few caveats. First, transitions

from one phosphate backbone to the other may result in energetic penalties that depend

on a sequence context beyond nearest neighbors, since more modifications will result in an

overall change in structure. This was best seen by the departure in prediction accuracy

with increasing phosphorothioate modifications. Second, the lack of terminal parameters

means that predictions will only hold true for a limited range of sequences. In the absence

of terminal parameters specifically determined for duplexes at various levels of modification,

using internal parameters alone to make predictions will cause shorter partially-modified

duplexes to proportionally depart greater from experimental values.

3.2.4 Predicting the impact of phosphorothiate modification on rationally de-

signed nucleic acid circuits

Rationally designed nucleic acid systems have been used for a variety of applications,

including enabling sensitive detection of analytes, precise assembly of nanoscale structures,

and even chemical computation [175, 33, 88]. This programmability comes in part from

the fact that experimental nucleic acid hybridization parameters often closely match theory,
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allowing accurate designs.

As an example, catalytic hairpin assembly (CHA) is an in vitro DNA-based signal

amplification reaction capable of achieving up to hundreds-fold amplification of nucleic acid

inputs [212, 119], making it potentially useful for diagnostic applications [118]. CHA designs

to date have derived in large measure from predictions by programs such as NUPACK [218]

that in turn rely on experimentally determined nearest-neighbor parameters. By modify-

ing the sequence of key regions, CHA circuits have been engineered to operate at various

temperatures [96] and to have reduced background leakage [97, 15].

While changes to circuit stability can be achieved by introducing mismatches or short-

ening sequence domains, modification of the backbone with phosphorothioates could also

serve to destabilize hybridization of a given duplex relative to a fully phosphodiester coun-

terpart. For example, the use of PS modifications (combined with additives such as single-

stranded DNA-binding proteins and urea) has already enabled enzyme-mediated isothermal

amplifications to operate with high specificity at lower temperatures [22]. Moreover, PS

modifications should also prove useful for imparting nuclease resistance to DNA circuits

mixed with biological samples [177].

To further investigate whether and how PS modifications can impact circuit design,

we generated a catalytic hairpin assembly (CHA) circuit that contained a hairpin (H1) that

was fully phosphorothioated (PS-H1) (Fig 3.4; Table 3.5). This circuit was based on a previ-

ously published high-temperature CHA (HT-CHA) circuit with an operating temperature of

60◦C [96]. We predicted that the circuit would now have a lower effective temperature range,

and that its performance could be predicted via the models we have developed. In greater

detail, at the maximum operating temperature of 60◦C, the unmodified intermediate (i.e.
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PO-H1:catalyst complex) and product (i.e. PO-H1:PO-H2 complex) species exhibit duplex

stabilities of -23.3 kcal/mol and -37.8 kcal/mol in the hybridized region, respectively. Our

model predicted that the modified versions of these complexes would have these same stabil-

ities at 50.1◦C (PS-H1:catalyst) and 46.0◦C (PS-H1:PO-H2) (Fig 3.5A), suggesting that the

circuit with PS-H1 would have a maximum operating temperature of around 50◦C. In fact,

when CHA was carried out with PS-H1 a decrease of activity beyond 50◦C was observed

(Fig 3.5B), in accord with modeling. A much lower overall signal was also observed with

PS-H1 than with PO-H1 (e.g. peak activity of 25 a.u./min compared to 150 a.u./min). This

was likely due to the reduced stability of the H1:Reporter complex as a result of phospho-

rothioation of the H1 strand.

We then tested how smaller-scale PS modifications, such as modification of individual

domains, can impact circuit behavior. To this end, we started with a previously developed

low-temperature CHA (LT-CHA) circuit designed for operation at 37◦C [96] as a starting

point and generated versions of LT-CHA circuits with strands that contained one or more PS-

modified domains. We chose to modify LT-CHA since LT-CHA components are less stable

and therefore more sensitive than their high-temperature counterparts to small energetic

penalties (i.e., 0.12 kcal/mol per PS modification). These include a catalyst strand with a PS

domain 1 (C*1), a catalyst strand with a PS domain 2 (C*2), a fully-modified catalyst strand

(C*123), and a hairpin 1 with a PS toehold (PS-H1*1), as well as their PO counterparts

(Table 3.6, Fig 3.6A). In the first step of CHA, the toehold of H1 binds to the single-stranded

catalyst, and H1 is unfolded by the catalyst to form the H1:catalyst complex. Thus, the

H1:catalyst complex must be energetically favored over the folded H1 structure to drive the

reaction forward. To show the predictive power of our model, we estimated the difference in
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duplex stability between the hairpin:PS catalyst complexes and the folded PO hairpin (i.e.

∆∆G = ∆G-H1:C - ∆G-Folded PO H1), which should correlate with circuit activity. In

accord with PS destabilization and our model, a loss of activity was expected for CHA with

PS-modified components.

In fact, the initial activity rates of chemically modified CHA circuits showed a good

correlation with respect to ∆∆G (Fig 3.6B). For example, modifying domain 1 in only hairpin

1 of CHA with PS residues increased ∆∆G of the PS H1:C complex to to -0.65 kcal/mol

and resulted in 75% of the original CHA activity, while modifying domain 1 in both hairpin

1 and the catalyst strand increased ∆∆G to -0.13 kcal/mol (i.e. only slightly favoring the

forward reaction) and showed 30% of original activity.

3.3 Discussion

In this work, we carried out HRM experiments to develop approximate thermody-

namic models for PO-PO, PS-PO, and PS-PS DNA duplexes, the latter two of which do not

yet have published sequence-dependent models. Based on our analysis, Tm determination by

HRM with the EvaGreen intercalating dye resulted in models that slightly underestimated

the stability of duplexes (ie. predicted higher ∆G values). While part of the skew may

be due to dye intercalation [131], simply assuming a linear relationship between possible

dye-binding positions (correlating with the total number of base-pairs) and the degree of

destabilization allowed adjustments to be made, to the point where predictions were similar

to those derived from UV-Vis hyperchromicity models. Overall, the biases accorded to dye

binding were fairly minor, with an average correction of 0.19 kcal/mol per base.
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More generally, there are notable differences between HRM and UV-Vis measurements

that should be taken into account when fitting model parameters. The indirect nature

of HRM allows high-throughput Tm measurements (i.e., compatible with 96-well plates)

and relatively low concentrations (down to 1 µM oligonucleotide), resulting in more rapid

and scalable model development. However, Tm-HRM (the Tm defined by HRM) must be

derived from the -dF/dT plot rather than by regression curve fitting or baseline extrapolation

methods [140, 148, 132, 151] typically used to determine Tm-UV-Vis (the Tm defined by UV-

Vis; the value at which half of all duplexes are bound), because curve fitting and baseline

extrapolation are not sensitive enough to detect the duplex-to-single-stranded transition in

HRM data at lower concentrations. Overall, this results in a ∼1-2◦C difference between Tm-

HRM and Tm-UV-Vis [140]. HRM-based models therefore trade off opportunities for rapid

and high-throughput modeling with lower accuracy. Depending on ultimate applications, Tm-

HRM should prove useful for quickly generating models for the increasing range of chemistries

available to oligonucleotides, especially backbone or sugar ring modifications that introduce

a new degree of freedom that, in conjunction with nucleobase sequence, might require a

combinatorially large (and synthetically intractable) set of duplexes to fully characterize.

By demonstrating that phosphorothioate duplexes, like phosphodiester duplexes, can

be represented by a nearest-neighbor type model, we set the stage for the development

of predictive models that can inform the designs of modified sequences that contribute to

practical applications, such as nucleic acid circuitry. Our results showed that duplex stability

decreases with an increasing number of modifications, with each modification resulting in

an average energetic penalty of 0.12 kcal/mol. Destabilization via phosphorothioation was

shown to affect circuit dynamics in a predictable manner and therefore provides a design

64



strategy beyond merely editing sequence. In addition, considering that PS modifications

have been regularly used in the design of therapeutic antisense oligonucleotides [45], our

predictive models may narrow the range of designs, thereby reducing time and cost for

testing candidates. For example, ATL1102 is a 20-nts antisense oligonucleotide designed for

treatment of multiple sclerosis that is fully phosphorothioated and additionally includes 2’-O-

(2-methoxyethyl) modifications and methylated cytosine and uracil bases [122, 8]. Based on

the PS-PO HRM model and assuming a physiological sodium concentration of 141 mM [155]

and an oligonucleotide concentration of 10 nM, for a PS-PO duplex of the same sequence with

no additional modifications we predict a Tm of 37.0◦C, which is physiological temperature.

In general, under physiological conditions, we predict that fully-PS DNA oligonucleotides

with Tm values within 0.25◦C of 37◦C can range in length from 13 to 26 nucleotides. Into

the future, hybridization models rapidly determined by HRM for other commonly used (and

currently unmodeled modifications) – such as 2’-O-methoxyethyl, morpholino, and peptide

nucleic acids – may also impact the the efficient design of oligonucleotide therapeutics.

3.4 Materials and Methods

Reagents and oligonucleotides. All oligonucleotides were ordered from Inte-

grated DNA Technology (IDT, Coralville, IA, USA). PS DNA oligonucleotides were pro-

duced through non-stereospecific chemical synthesis; as a result, PS oligonucleotides used in

this study may contain either the Rp or Sp diastereomer at each modified position. All chem-

icals were purchased from Fisher Scientific (Waltham, MA, USA). Oligonucleotides used for

model parameter determination are listed in Table 3.4, and those used for CHA are listed

in Table 3.5 and 3.6. Oligonucleotides were stored at 100 µM in nuclease-free water at
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-20◦C. Reactions were carried out in 1x NNE buffer (500 mM NaCl, 10 mM Na2HPO4, 1

mM EDTA, pH 7.0) for HRM experiments and 1x TNaK buffer (20 mM Tris-HCl, 140 mM

NaCl, 5 mM KCl, pH 7.5) for CHA.

Sequence design for parameter determination. Each sequence can be repre-

sented as a linear combination of nearest-neighbor nucleotide pairs [79]; the linear combi-

nations of pairs that make up a set of sequences can be represented together as a stacking

matrix. The duplex thermodynamic value (i.e. ∆G, ∆H, ∆S) of a given sequence is the

sum of the contributions of each parameter in the duplex. Thus, in the example of ∆G,

given a set of sequences represented by stacking matrix A, we can represent the duplex ∆G

of all sequences in the set as a vector ~b, where ~b is the product of the stacking matrix and

the vector of all parameter ∆G contributions ~x.

A︷ ︸︸ ︷
nseq1,AA/TT nseq1,AT/TA . . .

nseq2,AA/TT nseq2,AT/TA . . .
...

...
. . .

 ·
~x︷ ︸︸ ︷

∆GAA/TT

∆GAA/TT

...

 =

~b︷ ︸︸ ︷
∆Gseq1

∆Gseq2

...


The sequence set was designed to have a rank of 20, which is the maximum rank for

nearest-neighbor stacking matrices [78, 79]. The final set contains 66 total sequences and

consists of three 20-sequence subsets that independently attain rank 20.

Tm measurement, determination of thermodynamic values, and model fit-

ting. Each duplex was annealed prior to melting experiments by adding equivalent amounts

of top and bottom strands to obtain a final concentration of 25 µM and incubated for 5

minutes at 95◦C followed by a 0.1◦C/s ramp down to 20◦C. The annealed sequences were
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used to prepare 4 replicate samples at various final concentrations (1, 2.5, 5, 7.5, 10, 15, 20

µM), and each sample was adjusted to contain 1x NNE buffer and 1x EvaGreen dye (20x

EvaGreen dye in water purchased from Biotium, Hayward, CA). HRM data was collected

in the Roche LightCycler96 qPCR machine (Roche Molecular Systems, Inc., CA, USA) at

excitation 470 nm and emission 514 nm. dF/dT was calculated using the Roche LightCycler

Software version 1.1.0 (Roche Diagnostics International) by selecting “Add Analysis” and

“Tm calling”. Tm is defined as the peak of the dF/dT curve, and samples without distinct

peaks were excluded from the analysis. We used linear regression to fit the melting data to

the equation

1

Tm
=

R

∆H
ln

(
CT

4

)
+

∆S

∆H

to estimate duplex ∆H, ∆S, and by extension, ∆G. ∆G was extrapolated to 50◦C

to minimize heat capacity changes of unfolding. Values of ∆S or ∆G were adjusted to 1 M

NaCl during the fit using the salt correction reported in [161]. Unadjusted values are reported

in the Supplemental Data. A total of 4 sequences in the PO-PO dataset, 1 in the PS-PO

dataset, and 2 in the PS-PS showed high ∆H error (>30% of fitted ∆H value) were removed

on the basis that high error during Van’t Hoff analysis suggests either non-two-state behavior

or incorrect concentration. In each dataset, the set of remaining sequences maintained the

maximum rank of 20. All errors reported are standard deviations of the parameter fits.

Sequence ∆S and ∆H variances for each sequence were determined by regression and used

to calculate ∆G variances as described in [163].

For each model, the sequence variances were transformed into the parameter basis,
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resulting in a covariance matrix (CNN). To allow us to drop covariances between parame-

ters while not underestimating the error, we found the smallest diagonal covariance matrix

C ′NN in the parameter space such that the matrix inequality CNN ≤ C ′NN holds. Variances

derived from CNN are guaranteed to be equal to or overestimate the error on parameters;

we report the standard deviations of these parameters. We performed all data analyses us-

ing Python, including linear regression to the Van’t Hoff equation (scipy.optimize.curve fit),

singular value decomposition (numpy.linalg.svd), minimization of residual sum of squares

(scipy.minimize), and convex optimization for finding C ′NN (cvxpy).

CHA fluorescence kinetic reading. A 2.5 µM stock of reporter complex was

prepared by mixing 2.5 µL of RepF (100 µM stock in 1x TNaK buffer), 5 µL of RepQ (100

µM stock in 1x TNaK buffer), 10 µL of 10x TNaK buffer, and dH2O to reach a final volume

of 100 µL, followed by annealing. A two-fold excess of RepQ was added to ensure efficient

quenching of RepF, which is not expected to interfere with the readout of H1:H2. Prior to

the experiments, folded solutions of H1 at 5 µM (5 µL of 100 µM stock solution, 10 µL of 10x

TNaK buffer, and 85 µL of dH2O) and H2 at 10 µM (10 µL of 100 µM stock solution, 10 µL

of 10x TNaK buffer, and 80 µL of dH2O) were individually prepared from their respective

100 µM stock solutions by a 5 minute incubation at 95◦C followed by a 0.1◦C/s ramp down to

20◦C. Reaction mixtures (total volume of 25 µL) contained the following final concentrations

in 1x TNaK buffer: 200 nM folded H1, 400 nM folded H2, 50 nM annealed reporter complex,

1 µM polyT (dT21), and various concentrations of the catalyst strand (500 nM, 250 nM,

125 nM, and 50 nM). Reaction mixtures were loaded to a 96-well plate and immediately

transferred to the LightCycler96 plate reader (Roche Molecular Systems, Inc., CA, USA) for

fluorescence measurements conducted at 37◦C or higher (excitation: 470 nm, emission: 514
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nm).
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Figure 3.1: High-resolution melting (HRM) pipeline for determining duplex sta-

bility.

Peak change in fluorescence (dF/dT ) indicates melting temperature. Thermodynamic parameters

are derived from Van’t Hoff analysis on HRM data. Since all sequences are non-self-complementary,

1/Tm is plotted against ln(CT /4).
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Nucleotide Pairs ∆G50 ∆H ∆S

(PO-PO) (kcal/mol) (kcal/mol) (cal/K/mol)

AA/TT -0.83±0.14 -8.10±1.68 -22.5±4.8

AT/TA -0.56±0.10 -5.53±1.35 -15.4±3.9

TA/AT -0.58±0.12 -6.40±1.49 -18.0±4.3

CA/GT -0.95±0.15 -6.89±1.70 -18.4±4.8

GT/CA -0.94±0.15 -7.12±1.88 -19.1±5.3

CT/GA -0.94±0.14 -7.51±1.63 -20.3±4.6

GA/CT -0.88±0.14 -6.51±1.84 -17.4±5.3

CG/GC -1.62±0.16 -10.81±2.03 -28.5±5.8

GC/CG -1.76±0.16 -12.68±1.98 -33.8±5.6

GG/CC -1.09±0.15 -6.09±1.71 -15.5±4.8

EA/ET 0.49±0.40 20.73±4.98 62.6±14.2

AE/TE 0.48±0.40 20.20±4.89 61.0±13.9

EC/EG 0.63±0.40 21.07±4.93 63.2±14.0

CE/GE 0.43±0.40 18.09±4.84 54.7±13.8

Table 3.1: Approximate thermodynamic parameters for PO-PO (phosphodiester-

phosphodiester) duplexes derived from HRM data.

All reported values are adjusted to 1 M NaCl and 50◦C. PO-PO = Phosphodiester-phosphodiester

duplexes. Errors are defined as the standard deviations of the parameter fits.
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Figure 3.2: Comparison of ∆G predictions made by the HRM-derived model and

reported UV-Vis models

14 literature reported sequences are included. RSS = residual sum of squares.
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Nucleotide Pairs ∆G50 ∆H ∆S

(PS-PS) (kcal/mol) (kcal/mol) (cal/K/mol)

AA/TT -0.26±0.03 -4.36±0.77 -12.7±2.3

AT/TA -0.16±0.02 -3.64±0.52 -10.8±1.5

TA/AT -0.11±0.01 -1.93±0.53 -5.6±1.6

CA/GT -0.52±0.02 -5.52±0.57 -15.5±1.7

GT/CA -0.50±0.03 -3.95±0.75 -10.7±2.3

CT/GA -0.50±0.03 -4.16±0.64 -11.3±1.9

GA/CT -0.57±0.03 -5.07±0.90 -13.9±2.7

CG/GC -1.06±0.04 -6.16±1.01 -15.8±3.0

GC/CG -1.04±0.04 -6.90±0.77 -18.1±2.3

GG/CC -0.85±0.03 -5.09±0.83 -13.1±2.5

EA/ET -1.30±0.08 3.24±2.05 14.0±6.2

AE/TE -1.28±0.08 4.18±2.02 16.9±6.1

EC/EG -1.20±0.08 1.47±1.98 8.3±5.9

CE/GE -1.20±0.08 0.64±2.05 5.7±6.1

Table 3.2: Approximate thermodynamic parameters for PS-PS

(phosphorothioate-phosphorothioate) duplexes derived from HRM data.

All reported values are adjusted to 1 M NaCl and 50◦C. All internal nucleotide parameters have

PS linkages both in the top nucleotide pair and in the bottom pair (e.g. 5’A*A/3’T*T). Errors

are defined as the standard deviations of the parameter fits.
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Nucleotide Pairs ∆G50 ∆H ∆S

(PS-PO) (kcal/mol) (kcal/mol) (cal/K/mol)

AA/TT -0.52±0.20 -5.81±3.12 -16.4±9.1

AT/TA -0.42±0.10 -5.64±1.69 -16.2±4.9

AC/TG -0.88±0.11 -8.66±1.85 -24.1±5.4

AG/TC -0.71±0.09 -6.13±0.85 -16.8±2.3

TA/AT -0.30±0.10 -3.86±1.90 -11.0±5.6

TT/AA -0.49±0.07 -5.87±0.64 -16.7±1.7

TC/AG -0.64±0.16 -6.13±2.71 -17.0±7.9

TG/AC -0.77±0.15 -7.28±2.75 -20.2±8.0

CA/GT -0.82±0.17 -7.23±2.67 -19.8±7.7

CT/GA -0.66±0.19 -6.30±3.21 -17.5±9.4

CC/GG -0.91±0.11 -5.57±1.57 -14.4±4.5

CG/GC -1.21±0.18 -8.07±3.09 -21.2±9.0

GA/CT -0.85±0.12 -7.92±2.38 -21.9±7.0

GT/CA -0.61±0.14 -5.46±2.27 -15.0±6.6

GC/CG -1.15±0.15 -6.63±2.26 -17.0±6.6

GG/CC -1.09±0.17 -7.75±2.81 -20.6±8.2

EA/ET -0.57±0.40 13.64±6.63 44.0±19.3

AE/TE -0.54±0.37 15.07±6.01 48.3±17.5

ET/EA -0.59±0.39 14.87±6.29 47.8±18.3

TE/AE -0.56±0.38 14.72±6.18 47.3±18.0

EC/EG -0.58±0.33 10.31±5.35 33.7±15.6

CE/GE -0.55±0.38 10.49±6.30 34.2±18.4

Table 3.3: Approximate thermodynamic parameters for PS-PO

(phosphorothioate-phosphodiester) duplexes derived from HRM data

All reported values are adjusted to 1 M NaCl and 50◦C. All internal nucleotide parameters have a

PS linkage between the top nucleotide pair (e.g. 5’A*A/3’TT). Errors are defined as the standard

deviations of the parameter fits.
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Figure 3.3: Predicting duplex stability of partially PS-modified duplexes as a func-

tion of sequence (a) or independently of sequence (b).

(a) Duplexes with partially-modified strands were considered as a linear combination of PO-PO

(symmetrical), PS-PO (asymmetrical), and/or PS-PS (symmetrical) nucleotide pairs and ∆G pa-

rameters of these pairs across the three backbone conditions were used to predict the overall duplex

stability. Errors are calculated using the variances of the parameter estimates. (b) Data from fully

PS-PO or PS-PS duplexes was used to determine the average energetic contribution of a single PS

backbone (0.1154 kcal/mol/PS). PO-PO duplexes (points at x = 0) are not included in the R2

shown for sequence-independent predictions due to the large gap in ∆G50 between x = 0 and x = 1

seen in both sequences tested.
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Figure 3.4: Reaction diagram of catalytic hairpin assembly.

Asterisks indicate sequence complement. Complexes of multiple strands are denoted with a colon.
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Figure 3.5: HT-CHA with PO- and PS-H1.

H1 strand backbones are either fully PO or PS. (a) Duplex stability predictions for interactions

involving PO-H1 or PS-H1 (hybridized region only, symmetrical model). Gray dotted line indicates

the target stability or the duplex stability of PO-H1:catalyst or PO-H1:H2 at 60◦C, the temperature

for which the HT hairpins were originally designed [96]. (b) Initial rates of HT-CHA with PO-H1

or PS-H1 at various incubation temperatures. Catalyst strand is fully PO.
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Figure 3.6: Introducing PS backbones to select domains in LT-CHA.

(a) Modified parts used in LT-CHA circuit. (b) Observed initial rate of LT-CHA using modified-

domain hairpins with various modified versions of catalyst strand. Results show that H1 stability

is crucial for maintaining activity. PO-H1 = hairpin 1 with phosphodiester backbones. PS-H1 =

hairpin 1 with PS modifications on domain 1*. C*n = catalyst strand with PS on domain(s) n. (c)

Predicted duplex ∆G of H1 using symmetrical NN model for different modified versions of catalyst.

Predictions are made with unmodified H1 (left) or PS-domain 1*-H1 (right). LT-CHA
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Number Sequence

1 CTGTAAGGCGATATGTT
2 TGCCATGTTGAAAACC
3 TATTCTGCCAATGGAAC
4 GGTTGCGGTGGCCAAC
5 CGACATGTATGGCACAG
6 CTCGGAGGCCCCATTTA
7 CCGCTCAGAGTAGAGA
8 AATGAGGAGTGAAATGG
9 GCTGAACTAACCACCA
10 CCACTAGCGGCGCCGTT
11 GAGGCAGCCGCGACCTG
12 AGAGCGCCCTGCTGCC
13 GATGCCGCAGCGACCTG
14 AACGAATGTCAGCAATT
15 GCTGTGAAACAATGTAG
16 CGATTTTGTCAAGCCT
17 GAGCAGAAGGGGTTGT
18 ATAACTTACTCTCGCCT
19 CGGTGCTTTTGGTAGC
20 TCTCGCGGTTCCATTA
21 CGTGTGGATAATTAGCT
22 TTGAAAACCCATGTGC

Number Sequence

23 TTAACCTGCAATGGATC
24 GCGGTTGGTGGCCAAC
25 CACAGCGACATGTATGG
26 CCCAGGCCTCGGATTTA
27 CTCAGAGTAGAGCCGA
28 AGGAGTGAATGAAATGG
29 GAACTGCCACTACCAA
30 CTACCAGCGGCGCCGTT
31 GCAGGAGCCGCGACCTG
32 AGCTGAGCCTGCCGCC
33 GCCCGAGCATGACTGCG
34 AATGTCGAACAGCAATT
35 GTGAAACAATGCTGTAG
36 CAAGCCTCGATTTTGT
37 GTGAGCAGAAGGGGTT
38 ACTCGCTCTACCTTAAT
39 CTTTTGTGCGGGTAGC
40 TTCGCGGTCTCCATTA
41 CGTGCAGCACTACTTG
42 GTCATTGTGCTTTTGC
43 GAACCGTTGATGATCTC
44 TGTCGCACCCTACTA

Number Sequence

45 TACTTCCAACGTAGG
46 ACGGGTCGTTCCGTG
47 GTGGTACAAATGCGACC
48 AGCACGGTGGTACAACA
49 GGTGGCGTTCTT
50 TCTACACCGCGA
51 ACTGTATCGCCCTA
52 CCGTTGCTGCTAGG
53 TAGACGCGGCCTCTTTCC
54 CTAAACTGTTATAGCCGG
55 TGTAAGACTTCTGCCAGAAA
56 CGCGCGAGTATTTATAACCT
57 TTCTACATCCATCTTAATCCCA
58 AGACATCCCATACGAGCATCCA
59 ACATGACTCATCTTAGCCGGCGAG
60 CGGGATTTCTGGCATCATTGTCCT
61 TAATTATACGAGTAGTTTCTGTCCTG
62 GATTGTATCATCGACATCACACTACC
63 CAAACTTAGTAATCACGCCCAGCAACCA
64 GATCTCTCTATCATCGTTTATTGGGTAT
65 TTGTAGTTGACGTTTGTGATTTAGTGAATT
66 TTTGGGTTAGTAAGAAGGCAGCAGTTGGGC

Table 3.4: Sequences used for nearest-neighbor parameter determination.

Sequences were hybridized to their complements prior to HRM. Fully phosphodiester and fully

phosphorothioate versions of each sequence listed were used in the study. Sequences maximally

span the space of nearest neighbor pairs (i.e. sequences are maximally independent).
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HT-CHA Sequence

HT-H1 GTCACGTGA GCTAGCGTT AGCATCGTCG CCATGCTGCTAGCA
CGACGATGCT AACGCTAGC CCTTGTCA TACGCAGCAC

HT-H1-PSall

G*T*C*A*C*G*T*G*A* G*C*T*A*G*C*G*T*T*
A*G*C*A*T*C*G*T*C*G* C*C*A*T*G*C*T*G*C*T*A*G*C*A*
C*G*A*C*G*A*T*G*C*T* A*A*C*G*C*T*A*G*C*
C*C*T*T*G*T*C*A* T*A*C*G*C*A*G*C*A*C

HT-H2 AGCATCGTCG TGCTAGCAGCATGG CGACGATGCT
AACGCTAGC CCATGCTGCTAGCA

HT-H2-PSall
A*G*C*A*T*C*G*T*C*G* T*G*C*T*A*G*C*A*G*C*A*T*G*G*
C*G*A*C*G*A*T*G*C*T* A*A*C*G*C*T*A*G*C*
C*C*A*T*G*C*T*G*C*T*A*G*C*A

HT-Catalyst CGACGATGCT AACGCTAGC TCACGTGAC

HT-RF /56-FAM/CGA GTGCTGCGTA TGACAAGG GCTAGCGTT

HT-RQ C CCTTGTCA TACGCAGCAC TCG /3IABkFQ/

HT-Domain 1 TCACGTGAC

HT-Domain 2 AACGCTAGC

HT-Domain 3 CGACGATGCT

HT-Domain 4 CCATGCTGCTAGCA

HT-Domain 5 CCTTGTCA

HT-Domain 6 TACGCAGCAC

Table 3.5: Sequences and domains used for high-temperature CHA.

Asterisks in sequence indicates positions with PS backbones. Different domains are indicated by

different colors. /56-FAM/ = 5’ Fluorescein; /3IABkFQ/ = 3’ Iowa Black FQ.
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LT-CHA Sequence

LT-H1 GTCAGTGA GCTAGGTT AGATGTCG CCATGTGTAGA
CGACATCT AACCTAGC CCTTGTCA TAGAGCAC

LT-H1-PS1
G*T*C*A*G*T*G*A GCTAGGTT AGATGTCG
CCATGTGTAGA CGACATCT AACCTAGC CCTTGTCA 
TAGAGCAC

LT-H2 AGATGTCG TCTACACATGG CGACATCT AACCTAGC
CCATGTGTAGA

LT-H2-PS3 A*G*A*T*G*T*C*G TCTACACATGG CGACATCT
AACCTAGC CCATGTGTAGA

LT-Catalyst CGACATCT AACCTAGC TCACTGAC

LT-Catalyst-PS1 CGACATCT AACCTAGC T*C*A*C*T*G*A*C

LT-Catalyst-PS2 CGACATCT A*A*C*C*T*A*G*C* TCACTGAC

LT-Catalyst-PSall C*G*A*C*A*T*C*T* A*A*C*C*T*A*G*C*
T*C*A*C*T*G*A*C

LT-RF /56-FAM/CGA GTGCTCTA TGACAAGG GCTAGGTT

LT-RQ C CCTTGTCA TAGAGCAC TCG /3IABkFQ/

LT-Domain 1 TCACTGAC

LT-Domain 2 AACCTAGC

LT-Domain 3 CGACATCT

LT-Domain 4 CCATGTGTAGA

LT-Domain 5 CCTTGTCA

LT-Domain 6 TAGAGCAC

Table 3.6: Sequences and domains used for low-temperature CHA.

Asterisks in sequence indicates positions with PS backbones. Different domains are indicated by

different colors. /56-FAM/ = 5’ Fluorescein; /3IABkFQ/ = 3’ Iowa Black FQ.
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Figure 3.7: Nearest-neighbor style models considered and the parameters included

in each model.

Filled cells indicate that the nearest-neighbor pair was added as a variable to the model. Green =

nucleotide pair variable. Blue = terminal nucleotide variable. v = total variables involved.
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POPO model comparison with leave-one-out cross-validation (n=62)

Figure 3.8: Leave-one-out cross-validation on the PO-PO HRM dataset for ∆G50

and Tm (concentration = 10 µM)

Top row = without including terminal nucleotide variables, bottom row = including terminal

nucleotide variables. Color of dots represents length of sequence. The dashed line y = x is added

to guide the eye. RMSE = root mean square error.
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Figure 3.9: Thermodynamic parameter determination at different EvaGreen dye

concentrations.

EG = EvaGreen dye. Predicted value is based on the model from [161].
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PSPS model comparison with leave-one-out cross-validation (n=64)

Figure 3.10: Leave-one-out cross-validation on the PS-PS HRM dataset for ∆G50

and Tm (concentration = 10 µM)

Top row = without including terminal nucleotide variables, bottom row = including terminal

nucleotide variables. Color of dots represents length of sequence. The dashed line y = x is added

to guide the eye. RMSE = root mean square error.
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PSPO model comparison with leave-one-out cross-validation (n=65)

Figure 3.11: Leave-one-out cross-validation on the PS-PO HRM dataset for ∆G50

and Tm (concentration = 10 µM)

Top row = without including terminal nucleotide variables, bottom row = including terminal

nucleotide variables. Color of dots represents length of sequence. The dashed line y = x is added

to guide the eye. RMSE = root mean square error.
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Chapter 4

Parallel and in-memory computation with data stored

in DNA using strand displacement1

Abstract. DNA is an incredibly dense storage medium for digital data, but com-

puting on the stored information is expensive and slow as it requires rounds of

sequencing and de novo DNA strand synthesis. To augment DNA storage with

“in-memory” molecular computation, we use strand displacement reactions to al-

gorithmically modify data stored in the topological modification of DNA. A sec-

ondary sequence-level encoding allows high-throughput sequencing-based readout.

We show that computation can occur in parallel across multiple data. We demon-

strate multiple rounds of parallel binary counting and cellular automaton Rule 110

1This chapter is adapted from a draft manuscript by Wang B, Wang SS, Chalk C, Ellington AD, Solove-

ichik D. BW and SSW shared first authorship. BW, CC, and DS devised the project. CC and BW designed

the SIMD DNA strand-displacement algorithms. BW designed the experimental protocol for SIMD DNA

and performed all SIMD computations, post-computation ligation and displacement, and fluorescence exper-

iments. SW performed all post-computational library preparation, sequence and data analysis, and qPCR

assays. BW and SW prepared the figures with feedback from all authors. BW wrote the initial draft of

the manuscript which was later edited by all authors. DS and AE obtained funding and provided guidance
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computation on 4-bits data registers, as well as selective access and erasure. Avoid-

ing stringent sequence design, we demonstrate large strand displacement cascades

(122 distinct steps) on naturally-occurring DNA sequences. Our work merges DNA

storage and DNA computing and sets the foundation of massively parallel algorith-

mic manipulation of digital information kept in DNA.

4.1 Introduction

DNA is an incredibly dense (up to 455 exabytes per gram, 6 orders of magnitude

denser than magnetic or optical media) and stable (readable over millennia) digital storage

medium [39, 27]. Storage and retrieval of up to gigabytes of digital information in the

form of text, images, and movies have been successfully demonstrated [138]. Importantly,

DNA’s essential biological role ensures that the technology for manipulating DNA will never

succumb to obsolescence. While these properties make DNA a promising storage medium, it

is at present limited to the storage of rarely accessed data (“cold” storage) largely due to its

inefficient read-write cycle. Performing computation on the stored data involves sequencing

the DNA, electronically computing the desired transformation, and synthesizing new DNA,

which is an expensive and slow loop.

Here we design a new paradigm called SIMD||DNA (Single Instruction Multiple Data

DNA) which integrates DNA storage with massively parallel in-memory computation. As

shown in Figure 4.1A, unlike traditional DNA data storage where information is encoded

in the nucleotide sequence, SIMD||DNA encodes information in a register, a multi-stranded

DNA complex with a unique pattern of nicks and exposed single-stranded regions. There are
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as many independent registers as the number of molecules of the multi-stranded complexes,

each capable of storing and manipulating a different value. To manipulate information, an

instruction (a set of DNA strands) is applied to the registers. The strand composition of

a register updates if the applied instruction strands trigger strand displacement reactions

within that register. Strand displacement reaction has become a widely versatile building

block in engineering nucleic acid based systems. Displacement occurs when an input strand

invades a multi-stranded complex through binding to a toehold (single-stranded region with

five to seven nucleotides) and then displaces the incumbent strand as an output. Through this

mechanism, the strand composition, patterns of nicks, and exposed single-stranded regions

in the registers are changed. Instruction strands are synthesized independently of the data

stored in the registers, so that executing an instruction does not require reading the data.

After the non-reacted instruction strands and reaction waste are washed away, subsequent

instructions can be performed. Because all registers share the same sequence space, each set

of instructions can perform multiple unique strand displacement reactions across multiple

registers. This utilizes the parallelism granted by molecular computation (Figure 4.1B). Our

DNA data processing scheme is capable of parallel, in-memory computation, eliminating the

need for sequencing and de novo strand synthesis on each data update. Additionally, the

doubly-parallel nature of SIMD||DNA programs allows instructions to act on all registers

and multiple sites within a register in parallel.

We constructed the theoretical framework for SIMD||DNA and proved the correctness

of two molecular programs: binary counting (a fundamental function in computer program-

ming) and cellular automaton Rule 110 (a Turing universal computation) [200]. We then

experimentally implemented these programs and demonstrated correct computation for in-
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memory and parallel computation for a pool of 16 registers encoding all possible 4-bit binary

values. To scale up the computational power, we show that the registers can be repeatedly

processed prior to read out by conducting multiple rounds of computation. In addition, like

a computer’s memory, information stored in the SIMD||DNA paradigm can be specifically

queried (random access) or erased. Registers can be constructed using both chemically syn-

thesized DNA and naturally-occurring DNA (i.e. non-genetically modified sequences), fur-

ther reducing the dependency on custom oligonucleotide synthesis. We show that unmodified

kilobase-length M13 phage plasmid provides a large storage space that allows information

size to be scaled up, by constructing multiple sub-registers for parallel computation. So

far this is the largest strand displacement system using naturally-occurring DNA sequences:

Using SIMD||DNA, we implemented 18 distinct strand displacement reactions in solution at

the same time, and in total 122 distinct strand displacement reactions.

4.2 Results

4.2.1 SIMD||DNA

Figure 4.1 shows the overview of SIMD||DNA. Every register contains a long “bottom”

strand and multiple short strands, called top strands, bound to the bottom strand. We use

domain to represent consecutive nucleotides that act as a functional unit. Complementary

domains are represented by a star (∗). The length of the domains is chosen such that: (1)

each domain can initiate strand displacement (i.e. can act as a toehold), (2) strands bound

by a single domain readily dissociate, and (3) strands bound by two or more domains cannot

dissociate. Each bottom strand is partitioned into sets of consecutive domains called cells
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(Figure 4.1C). Each cell contains the same number of domains. Cells encode information with

the binding configuration of their top strands (e.g. lengths, presence or absence of toeholds).

For the programs we designed, we used a binary encoding with each cell representing one

bit.

Each instruction of a program corresponds to the addition of a set of DNA strands

at high concentration to a solution containing the registers. The registers are attached to

magnetic beads, allowing washing away of beadless non-reacted instruction strands and re-

action waste. Registers and instruction strands are allowed to react for a short amount of

time before washing such that the high concentration instruction strands interact with the

registers, but the low concentration waste products do not. The instruction strands can

cause three different types of events (Figure 4.1D). Attachment reactions preserve all the

strands originally bound to the register and attach new strands (as long as the new strand

binds strongly enough—by two or more domains). The attachment of an instruction strand

can lead to a partial displacement of a pre-existing strand on the register. Displacement

reactions introduce new strands to the register and detach some pre-existing strands. Upon

binding to a toehold on the register, the instruction strand displaces pre-existing strands

through 3-way branch migration. Toehold exchange reactions are favored towards displace-

ment by the instruction strand since they are added at high concentration. Two instruction

strands can also cooperatively displace strands on the register. Detachment reactions de-

tach pre-existing strands without introducing new strands to the registers. An instruction

strand that is complementary to a pre-existing strand with an open overhang can use the

overhang as a toehold and pull the strand off the register.

To experimentally implement SIMD||DNA, considerations for readout need to be
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incorporated in the design (Figure 4.1E). To read out parallel computation results where

registers share the same sequence space, registers with different initial values are given their

own barcode sequences. Since information is encoded in the pattern of the top strands,

direct readout requires obtaining the location of nicks. To read out the stored information

through sequencing while preserving the desired computation logic, we modified the encoding

by introducing mismatches between the top strands and the register in a manner that can

coexist with the nick-based encoding. Since mismatches can affect strand displacement

kinetics [129], the mismatch locations are carefully chosen to ensure that the desired strand

displacement reaction is favorable. This secondary encoding allows us to read out the data

stored in a heterogeneous pool of registers after ligating the nicks, PCR amplifying the

products, and applying next generation sequencing (NGS). The resulting NGS reads, which

correspond to proportionally amplified computation products, each encodes a 4-bit value

and collectively represent the output of the computation. As in regular DNA storage, this

readout method is destructive; however, a small sample can be taken, leaving most of the

solution intact.

4.2.2 Binary Counting Program

We first start with the binary counting program: beginning from arbitrary initial

counts stored in different registers, each computation step increments all the registers in

parallel. Compared to counting in electrical circuits at the hardware level, where complicated

modules are required (a full adder requires at least 2 XOR gates, 2 AND gates and an OR

gate—18 transistors total), binary counting in SIMD||DNA requires only 7 instruction steps

independent of the size of input. Binary counting requires changing all 1s to 0 starting from
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the least significant (rightmost) bit to more significant bits until the first 0, and changing that

0 to 1. All bits to the left of the rightmost 0 remain the same. As shown in Figure 4.2, the

SIMD||DNA program encodes states 0 and 1 by two different sets of top strands. One extra

domain is included to the right of the rightmost cell which is used to initiate displacement.

Starting from the rightmost domain, the program erases all 1’s in between the rightmost

cell and the rightmost state-0 cell (Instructions 1 and 2), and changes those cells to 0 at

Instructions 4 and 5. The rightmost state-0 cell is first marked (Instruction 3), and then

changed to state 1 (Instructions 6 and 7). We previously proved the correctness of the

program in our previous work [200]. Note that the binary counting program requires a

strand displacement cascade (Instructions 1) and the depth of the cascade is dependent on

the number of consecutive 1’s to the right of the rightmost 0.

To further reduce SIMD||DNA’s dependence on artificially designed long oligonu-

cleotides as bottom strands, we chose to assemble registers using the M13mp18 single-

stranded DNA plasmid from the M13 bacteriophage without modifications to the original

sequence. Phosphoramidite synthesis, currently the golden standard for de novo synthesis

of single-stranded oligonucleotides, becomes increasingly error-prone as a function of strand

length. On the other hand, naturally-derived DNA is ensured to have both high fidelity and

high quality DNA as a result of biological error-correcting mechanisms. The single-stranded

M13 bacteriophage plasmid is a staple of DNA nanotechnology that has been widely used

as scaffolds for DNA origami [159]; similarly, it could potentially accommodate computation

with SIMD||DNA on several hundreds of bits. Despite these advantages, naturally-occurring

DNA is typically not used in strand displacement due to the potential for undesired sequence

complementarity. While artificially designed sequences can be optimized to minimize sec-
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ondary structure (e.g., using a 3-letter alphabet [224], computational tools like NUPACK

sequence designer [206], or other tools [224, 60]), naturally-occurring DNA may contain ther-

modynamically stable secondary structures that trigger undesired spurious interactions or

prevent desired displacement from completing and ultimately producing incorrect computa-

tion results.

Rather than designing the sequence, we pursued the use the naturally-occurring DNA

without significant sequence optimization: We screened different regions on the M13mp18

plasmid for viability by first eliminating areas with undesirable secondary structures (specifi-

cally, G-quadruplexes and hairpins [A] [159]) from consideration and then selecting 9 random

addresses as candidates at which we encoded sub-registers (Figure 4.2B). We tuned the do-

main strength and categorized the encoded registers according to the binding strengths of

some domains: weak (sub-registers 1 through 3), medium (sub-registers 4 through 6) and

strong (sub-registers 7 through 9). Each category is expected to react at different exper-

imental conditions as a result of the domain strength; for example, registers with strong

binding strength are expected to require higher temperature or longer reaction time. We

tested initial values 0010 and 0011 with different reaction temperatures (Figure 4.3) on these

9 sub-registers, and then picked 5 for further experiments.

We first performed SISD (single instruction single data) computation on sub-register

8 for each of the 16 4-bit initial values. All registers within each test tube contained the same

initial value of sub-register 8. After NGS sequencing, reads were organized according to the

barcode sequences associated with their encoded initial values, and the percentage of reads

representing the correct value was calculated. More than 90% of the registers can be success-

fully assembled, processed, and sequenced (Figure 4.4A). After a round of binary counting
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computation, sub-registers affiliated with all 16 initial values show the correct output as the

dominant output (Figure 4.2C), with the minimum correct percent at 68%. We observed

similar results for sub-register 3 (Figure 4.4B). We then performed SIMD computation on

sub-register 8 by pooling registers with all 16 initial values in the same test tube (Figure 4.6)

for computation . Figure 4.2D shows that all the initial values were updated correctly, with

the minimum correct ratio at 60%. After testing different incubation temperatures (Fig-

ure 4.5), we achieved similar computation results on sub-registers 7 and 9 (Figure 4.7) at a

higher temperature.

We then investigated the ability to store and compute data on multiple registers si-

multaneously with SIMD||DNA. We tested parallel computation on multiple sub-registers

assembled on M13. Each M13 molecule was assembled with both sub-registers 7 and 9 at the

temperature compatible to both (Figure 4.8). For each step of the computation, instruction

strands for both sub-registers were applied simultaneously. As shown in Figure 4.2E, most

registers produced the highest readcount for the correct output, with the minimum correct

ratio at 15%. This reduction of yield could be due to spurious cross-talk between the in-

struction strands for sub-registers 7 and 9. Additionally, as the success of computation is

dependent on experimental conditions, this reduced accuracy may also stem from operating

at a sub-optimal temperature for each register as a compromise for compatibility.

4.2.3 Rule 110 Program

In addition to binary counting, we also implemented a program that simulates ele-

mentary cellular automaton (CA) Rule 110. An elemental cellular automaton [207], one of

simplest models of computation, consists of an infinite set of cells with two states, 0 or 1.
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At each time step, updates to a cell depend on the states of its left and right neighbors. A

simple two-rule characterization of Rule 110’s transition rule is as follows: 0 updates to 1 if

and only if the state to its right is a 1, and 1 updates to 0 if and only if both neighbors are

1. Critically, Rule 110 has been shown to be Turing universal [40].

The SIMD||DNA program for implementing one time step evolution is shown in Fig-

ure 4.10. Theoretically, SIMD||DNA’s in-memory computation model is as powerful as any

other space-bounded computing technique. In other words, our space-bounded simulation of

Rule 110 immediately gives that any computable function can be computed by a SIMD||DNA

program, if the required space is known beforehand. Note that the Rule 110 simulation in-

vokes two sources of parallelism: instruction strands are applied to all registers in parallel,

and every cell within a register can update concurrently. This contrasts with binary counting

where instruction 1 requires a cascade of strand displacement reactions across multiple cells.

To experimentally implement the Rule 110 program, we used M13 sequences as well

as artificially designed sequences. Since the encoding of information 1 contains an exposed

region, to enable ligation and sequencing, a set of “seal” strands were applied to all the

registers after performing parallel computation on all 16 initial values to fill in the gaps

on the patterns of the top strands (Figure 4.9A). We confirmed that the Rule 110 program

updated correctly for the 16 registers encoded with artificially designed sequences–the correct

values are the dominant output (Figure 4.9B; the control for registers without computation

are shown in Figure 4.11). We achieved similar results using the native M13 sequence as

seen in Figure 4.12.
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4.2.4 Random Access

A related desired functionality for DNA data storage is to be able to selectively

address or read out a specific subset of data registers, a process commonly referred to as

random access. Random access avoids reading out everything at once, thereby destroying all

data. Traditional DNA storage uses PCR to selectively amplify data [138] or selectively pull

out information by tuning the binding affinity between sequences [13]. However, designing

sequences or multiplexed orthogonal PCR probes with high specificity can be challenging.

Additionally, it is necessary to reconstruct the database for information update after if a

single piece of data is read. On the other hand, strand displacement achieves specificity

through kinetically and energetically favorable reactions that displace a pre-existing strand.

In SIMD||DNA, every register is prepared with unique barcode sequences corresponding to

different initial values; these sequences can serve as a point of access for specific registers.

Another feature of random access is that it allows selective erasure. Accessing data can

selectively destroy a subset of the database (data erasure) but leaves the remainder available

for further computation. Instead of reconstructing the database, a new, edited register can

simply be added to a previously-accessed database as an update. In principle, in SIMD||DNA

programs, after computation on multiple registers, displacement strands with unique barcode

sequences can be added to the solution to release registers with the matching barcodes from

magnetic beads. Thus, every register can be queried separately for read out from the register

mix.

We experimentally demonstrated parallel computation and random access of both

the Rule 110 and the binary counting programs. We show that registers can be sequentially

accessed by adding a series of different displacement strands with distinct barcodes (Fig-
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ure 4.13A). We mixed all 16 registers to perform Rule 110 computation. After computation,

we first added a displacement strand with a barcode corresponding to 0011 and processed

the displaced registers (ligation, PCR amplification, sequencing). Next, we added another

displacement strand with a barcode corresponding to 1001 to query the second register. Fi-

nally, we added all 16 different displacement strands (corresponding to all 16 barcodes to

access all of the information. The sequencing results confirmed that, for the first and second

queries, the desired register is the dominating register among the registers displaced from

the mix.

Registers can be accessed in parallel by adding different displacement strands to

different register mixes at the same time (Figure 4.14). All the queries were successful

and at least 23% of registers show the correct value. Accessing a register also performs

selective erasure of the data. Following displacement of one specific register, we added all

14 displacement strands to displace the remaining data from the register mix. We observed

that reads corresponding to the displaced register were notably less abundant compared to

reads corresponding to all other registers. (Figure 4.15)

4.2.5 Sequential computation

Finally, we scaled up the computational power of SIMD||DNA through sequential

computation. We began with the Rule 110 program (Figure 4.16A) and prepared 4 sets of

register mix containing 5 distinct registers, each encoding a unique initial value. Each set

went through one of the following processes: no computation, one round of computation,

two rounds of computation, and three rounds of computation. After these processes, all

registers from the register mix were ligated, displaced from magnetic beads, PCR amplified,
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and sequenced. In the first round of computation, we confirm that all initial values included

in the register mix produced the correct value as the dominant output, with the correct value

encompassing at least 83% of all reads. In the second round of computation, all initial values

again achieved the correct value as the dominant output, with the correct value represented

in at least 34% of all reads. In the final round, all but one initial value produced the

correct value as the dominant output; for this initial value, the correct value was observed

in approximately 10% of all reads.

For the binary counting program, we first prepared 7 sets of register mix containing

all 16 registers (Figure 4.16B, left panel). One set did not go through any computation and

served as a control. The other 6 sets initially went through one round of computation. As part

of another experiment, a different register was random accessed (and therefore erased) from

each set (results in Figure 4.13). For 3 of the 6 sets, all remaining registers were displaced

and sequenced, and the analyzed results were pooled together to account for the missing

registers (Figure 4.16B, middle panel). The other 3 sets were subjected to another round of

computation, followed by access of all remaining registers, post-computation processing, and

sequencing. Likewise, the two-round computational results of these 3 registers were pooled

in our analysis (Figure 4.16B, right panel). After the first round of computation, the correct

value was represented in at least 22% of all reads for each initial value; following the second

round of computation, the correct value was present in at least 12% of all reads.

To investigate the limit of multi-round computation, we quantified the amount of

product remaining after each round of computation using the Cq value as determined by

qPCR (i.e. the number of cycles needed to detect a signal above background) and quan-

titative electrophoretic techniques. In qPCR, the signal strength is dependent on the con-
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centration of the sample and doubles at each cycle. Thus, for two samples with Cq values

C1 and C2, the ratio of their concentrations can be calculated as 2C1−C2 . We calculated a

yield of roughly 38% for each round of computation (Figure 4.17A). To corroborate these

results, we additionally used an Agilent 2100 BioAnalyzer instrument to measure product

concentrations for dilutions of the computation products. We observed a similar yield with

multi-round Rule 110 computation, with an average of about 28% per round. This product

loss can be attributed to magnetic beads lost due to washing (≈ 59% yield) and imperfect

ligation (possibly from gaps resulting from incorrect computation or incomplete ligation by

T4 ligase). From our analysis, we determined that approximately 70% of the product loss

results from bead loss during washing, and only about 30% is caused by imperfect ligation.

This indicates that the yield can be significantly improved by a better washing technique.

Theoretically, using the same protocol, we can perform up to 27 rounds when storing registers

with 10,000 different values (Figure 4.18).

4.3 Discussion

We proposed and implemented the in-memory and parallel computation architecture

SIMD||DNA as a new DNA data storage paradigm. In practice, we performed in-memory

and parallel computation of two programs, binary counting and cellular automaton Rule

110, on 4-bit registers, which can be constructed using both naturally existing sequences

and artificially designed sequences. To demonstrate that the computational power may be

scaled up, we implemented random access memory and multiple rounds of sequential compu-

tation. We investigated the completion level of some of the instructions, which finish quickly

since instruction strands are added at high concentration and no slow strand displacement
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mechanisms (e.g. 4-way branch migration) are involved. However, strand displacement sys-

tems can be error prone. Undesired triggering reactions (i.e. leak) can come from fraying

at the nicks in the registers and undesired opening of domains, both of which may lead to

strands being mistakenly displaced or binding incorrectly. The SIMD||DNA programs pre-

sented here are not robust to leak. We mitigated leak by allowing registers and instructions

strands to react for a short amount of time before washing. This favors the faster desired

strand displacement events while slower leak reactions are unfavored. However, in situations

where undesired reactions are fast, leak can be a major source of error; this raises the ques-

tion of whether leakless design principles [191, 201, 202] can be imposed on SIMD||DNA

constructions.

Our method of storing information in DNA is motivated by recent developments in

DNA storage employing topological modifications of DNA to encode data [186]. Although we

use chemically synthesized strands to assemble registers, it is possible to programmatically

cut naturally existing DNA and form strand breaks at desired locations as a high-throughput

method of writing information into registers. In contrast to storing data in the DNA sequence

itself, encoding data in nicks sacrifices data density but could reduce the cost of large-scale

de novo DNA synthesis by repurposing biologically-derived DNA. Other than the approach

we have taken to adapt SIMD||DNA for sequencing (i.e. including a secondary sequence

encoding with mismatches and performing ligation), recently developed Nanopore sequenc-

ing methods could potentially read information encoded in nicks and single-stranded gaps

directly in double stranded DNA in a high-throughput manner [125]. Registers can also be

affixed to the surface of a microfluidic chip to achieve autonomous control of reacting with

instruction strands and elution, which could increase both the yield and scale of computation.
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Information stored in the DNA sequence has been argued to be stable for thousands

of years [39]. In contrast, SIMD||DNA stores information in the pattern of nicks, and as a

result, stored data may be more prone to change since it is possible that the pattern of nicks

is more readily disrupted than the DNA sequence itself (e.g. via undesired 4-way branch

migration between different registers). In addition to the methods used in traditional DNA

data storage to increase the longevity [77, 94], it is possible to seal the nicks reversibly through

light-induced photochemical ligation [44]. Our current encodings in SIMD||DNA store data

at a density of approximately 0.03 bit per nucleotide, a decrease from traditional storage

schemes that encode information in the DNA sequence itself for a theoretical maximum data

density of 2 bits per nucleotide. In principle, data density can be increased by using different

encoding schemes, such as allowing overhangs on the top strands to encode information.

In our current implementation of reading out SIMD||DNA products, we use mismatches to

differentiate bit information, which is orthogonal to the logic encoding. It may be possible to

increase data density by encoding logic information through mismatches so that the effect of

an instruction depends on the difference in binding stability or kinetics between mismatched

and perfectly matched sequences.

Designing DNA strand displacement systems that can readily utilize naturally-occurring

sequences is still a challenge. There are several advantages to using naturally-occurring

DNA over artificially designed and chemically-synthesized DNA. First, the length and fi-

delity of biologically-produced DNA far exceeds those attainable by chemical synthesis [93].

With phosphoramidite synthesis, currently the standard technique for de novo production

of oligonucleotides, oligonucleotides longer than 100 nucleotides (such as those required for

SIMD||DNA registers) are likely to be truncated and consequently trigger leak reactions.
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Further, if the displacing strand is truncated it may not be able to fully displace the in-

tended target, resulting in low completion. Thus, current chemical synthesis techniques

have an upper bound of oligonucleotide length under reasonable yield requirements, which

limits the design of DNA architectures. Most schemes therefore avoid using oligonucleotides

of lengths longer than ≈ 70 bases, because longer strands require higher levels of purifica-

tion and a different, more expensive synthesis architecture (e.g., IDT UltramersTM [4]). In

contrast, bacteriophage DNA is typically on the order of kilobases in length and, impor-

tantly, single-stranded. Second, the cost to produce natural DNA biologically is far lower

than that of producing custom DNA synthetically. M13mp18 plasmid can be easily cultured

and harvested using minimal equipment, in contrast to custom oligonucleotide that require

specialized synthesizers. Special synthesis architecture and additional purification steps are

often needed to produce a similar yield compared to shorter oligonucleotides, adding to both

the time and financial cost of production. At time of writing, M13 plasmid can be commer-

cially purchased at less than $5 for 1 µg at leading suppliers, whereas a typical oligonucleotide

sequence of 200 nt costs around $40 per 1 nmole. Further, recent technology developed for

DNA origami can produce both short single stranded staples and the long M13 to achieve

production costs of around $0.025 per µg of folded DNA origami [150]. The same technology

may be potentially applicable to SIMD||DNA, with instruction strands synthesized in the

same manner as the staple strands for origami.

SIMD||DNA can potentially revolutionize DNA storage architecture for future ap-

plications. Given the current challenges in attaining high-quality, large-scale de novo long

custom strand synthesis [146, 117] and the urgent, growing need for archival data stor-

age worldwide, SIMD||DNA presents an intermediate solution that facilitates DNA storage
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for practical settings. In a longer-term context, SIMD||DNA could remain relevant as an

interface between DNA computation modules that process molecular inputs and a semi-

permanent record of the output of those computations. This can both scale up strand

displacement-based DNA nanotechnology while adding a “wet” sensor component to other-

wise “cold” data storage. Towards this end, one could for instance envision a database of

personal medical records that is collected through molecular detection programs taking daily

samples from the patient as input and updating corresponding registers for later readout.

4.4 Materials and Methods

*DNA oligonucleotides DNA oligonucleotides were synthesized by Integrated DNA

Technologies (IDT). The bottom strands were ordered as PAGE purified Ultramer DNA

Oligonucleotides. The unlabeled oligonucleotides for 4-bit registers were ordered PAGE

purified. The fluorophore or phosphate labeled oligonucleotides were ordered HPLC purified.

M13mp18 single-stranded DNA plasmid was purchased from NEB (# N4040S).

Register preparation

Anneal register The bottom strand and all the top strands were mixed and then annealed

with 5% excess of top strands. The buffer for the annealing process was TE/Na+ (1 M)

buffer (0.04 M Tris, 1 mM EDTA, 1 M Na+). The annealing process was performed in a

PCR thermocycler: DNA strands were incubated at 95 ◦C for 5 minutes and then slowly

cooled down with rate 0.1 ◦C/s to 20 ◦C◦C.

Label register to magnetic beads
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The “Dynabeads MyOne Streptavidin C1” magnetic beads were purchased from Invitrogen

(# 65001). The SuperMag Multitube Separator was purchased from Ocean NanoTech (#

MMS-1.5-8) To resuspend the beads, they were first vortexed for 30 sec. Then 5 µL beads

were transferred to a tube and washed twice with the TE/Na+ (1 M) buffer. The washed

beads were incubated with the annealed register (25 µL at concentration 1 µM) on a rotator

for 25 min. The beads were then washed twice by the washing buffer TE/Na+ (0.5 M) buffer

(0.04 M Tris, 1 mM EDTA, 0.5 M Na+, 0.01% Tween 20) to remove the excess register.

Finally we suspended the bead with 25 µL washing buffer. The register concentration was

approximately 400 nM, estimated based on bead capacity.

Computation experiments

For each computation experiment, 5 µL labelled registers were transferred from the

above stock and mixed with other instruction strands, diluting to 25 µL with approximate

concentration 80 nM. The concentrations for the strands in each instruction are: 3 µM for

instruction 1, 0.5 µM for instruction 2, 0.5 µM for instruction 3, 3 µM for instruction 4,

1 µM for instruction 5, 0.5 µM for instruction 6, 0.5 µM for instruction 7. The reaction

temperature for instruction 1 varied from 25 ◦C to 40 ◦C. The reaction temperature for all

other instructions was 25 ◦C. After incubating for 10 min, the magnetic beads were washed

twice by the washing buffer. The 96-well super ring magnet separator plate (SKU:T480),

purchased from Permagen was used for elution.
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Post-computation processing

Add adaptor strand

The adaptor strand (0.5 µM) located at the rightmost side for sequencing purposes was

mixed with registers and incubated for 10 min. The beads were then washed twice by 1×

T4 ligase buffer to remove excess adaptor strand. The 1× T4 ligase buffer was prepared by

diluting the 10× T4 ligase buffer purchased from NEB (# B0202S) and mixing with Tween

20 to reach 0.01%.

Ligation

400 units of T4 ligase, purchased from NEB (# M0202S) were incubated with the register

at 25 ◦C for 10 min. The product was washed twice with the above ligase buffer.

Displacing bead

The displacement strand (40 nM) was mixed with the ligated product at 25 ◦C for 10 min.

The supernatant was transferred to a new tube and inactivated by heat for 10 min at 65 ◦C.

Library preparation

Prior to amplification, the displaced product was quantified by qPCR with the LightCy-

cler96 instrument (Roche). Reaction mixtures contained 2.5 nM of the displaced product,

500 nM each of forward and reverse PCR primers containing NGS adaptors and unique

barcodes, 400 µM dNTP, 1× EvaGreen intercalating dye (Biotium #31000), 0.4 U/µl Q5

DNA polymerase (NEB #M0491S), 1× Q5 Reaction Buffer (NEB). qPCR was performed

on the samples using the following protocol: initial melting at 98 ◦C for 3 minutes, followed

by 30 cycles of amplification with melting at 98 ◦C for 30 sec, annealing at 67 ◦C for 30 sec,

and extension at 72 ◦C for 30 sec (measurement taken), followed by a final extension at
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72 ◦C for 3 minutes (measurement taken). Once the Cq of each sample was determined,

PCR was repeated using the same thermocycling protocol in a thermocycler with the same

concentrations, barcoded primers, and protocol as described for qPCR, except EvaGreen dye

was replaced with nuclease-free water and the number of cycles was set to Cq + 5 for each

sample to minimize the amplification of side products. After PCR, equivalent amounts of

each sample were pooled together and gel purified for the expected size after running on a

1.8% NuSieve GTG agarose gel (Lonza #50081) using a QIAquick PCR & Gel Cleanup Kit

(Qiagen #28506) as per manufacturer’s instructions for gel purification with the following

exceptions: gel fragments were incubated in Buffer QG for at least 20 minutes at 60 ◦C

(instead of 10 minutes at 50 ◦C), and the column containing product was washed 3 times

using Buffer PE (instead of once). The final samples were eluted in nuclease-free water and

diluted to a concentration of 5 ng/ul as measured by Nanodrop.

Next-generation sequencing

Sample libraries were sequenced for 2x261 cycles using Illumina MiSeq 2x250 paired end

reagent kits (v2). Because SIMD products exhibit very low base diversity (i.e. strands

are very likely to have the same base composition at any given position within the target

sequencing range), it is necessary to boost base diversity to avoid downstream analysis issues.

We added a genomic DNA sample library (approximately 50% of all reads) on any runs in

which SIMD products accounted for more than 30% of all reads.

Sanger sequencing data analysis

We included sequenced library prepped, single data computation products using both

forward and reverse primers to gain confidence on the base call results and to maximize the
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portion of the computation product with high quality base calls. Sanger sequencing traces

were mapped to the expected SIMD product sequence using the ”Map to Reference” feature

in Geneious 2020.0.5. We determined the computation results using the composition of the

base call at the nucleotide positions of interest. Although Sanger sequencing is generally used

for discrete base calls (i.e. “A/T/C/G”), mixed populations can be detected when a position

has more than one visible nucleotide. Because we expected single data SIMD products to

have a mix of two possible nucleotides at each mismatch position, we interpreted the height

of base call peaks in the raw trace to be representative of the relative proportions of each

base in that population.

Next-generation sequencing data analysis

Next-generation sequencing was performed with the Illumina MiSeq V2 paired-end

platform with 2x261 cycles. All data analysis was performed using Python. Each register

sequence contains 4 cells, each of which contains a single nucleotide position the determines

the bit value for that cell, or the “variable nucleotide position”. In contrast, the sequences

between consecutive variable nucleotide positions are expected to be constant regions, as no

mutations are expected in these regions other than those arising from synthesis, PCR, or

sequencing errors. An initial filter was applied to the raw reads such that reads with at least

3 consecutive constant regions, each with a maximum of 1 mutation (indel or substitution),

were considered viable for analysis. If one read in a paired set of reads satisfied the criteria,

its partner reads would also be included regardless of whether it passed the filter. Viable

reads were then matched to its sample and initial value by identifying its barcodes. Reads

with sample barcodes that contained no more than 2 mutations to the expected barcode
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and that contained no more than 1 mutation in the register (i.e. initial value) barcode were

included in the final analysis.

To read out the results of SIMD computation, each read in a qualified read pair was

locally aligned to each expected cell sequences using pairwise2 from Biopython with match,

mismatch, gap opening, and gap extending scores of 1, -0.5, -0.5, and -0.5, respectively. If

the aligned nucleotide at a variable nucleotide position neither matched the original sequence

nor was “G” in the forward read or “C” in the reverse read, as any SIMD-related sequences

changes would result in an “N” → “G” mutation in the forward strand, the corresponding

digit would be marked as undefined for that read. Finally, for each of the four digits, the

read in the pair with the greater read quality score at the variable nucleotide was used to

call the bit.
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Figure 4.1: Overview of SIMD||DNA.

(A) Computation in traditional DNA storage paradigm relies on outsourcing computation processes

to classical computer with additional required steps of sequencing and synthesis. The SIMD||DNA

paradigm allows in-memory computation performed through DNA strand displacement reactions.

(B) Analog to the single instruction multiple data (SIMD) computation in classical computer

which enables processing multiple data by one single instruction, the SIMD||DNA paradigm can

also perform parallel computation on multiple registers simultaneously. Each DNA register is a

multi-stranded complex. Different information is encoded in the pattern of nicks and exposed

single-stranded regions in the register. Registers are attached to magnetic beads (blue). At each

instruction step, a set of instruction strands is added to the solution to react with all registers

in parallel. Next, waste species (i.e. unreacted instruction strands and displaced reaction prod-

ucts) are washed away. After a series of sequential reaction and washing steps, the information

stored on the registers is updated. (C) The notations for SIMD||DNA. Domains are represented by

square boxes. We indicate complementarity of instruction strands to register domains by vertical

alignment. If a domain label is given explicitly (e.g. a and a∗), the domain is orthogonal to the

other vertically aligned domains A strand can be described by listing the constituent domains in a

bracket <> from 5’-end to 3’-end. Strands with solid lines are complementary to the corresponding

domains in the bottom strand. Strands with dashed lines are complementary to the corresponding

domains in the top strand. A dashed instruction strand indicates the domains in the instruction

strand are complementary to other vertically aligned domains. (D) Three types of events can oc-

cur when registers react with instruction strands: attachment, displacement and detachment. (E)

Experimental workflow. Registers are first assembled, and then undergo computation. The post-

computation process including ligation and PCR amplification allows computation products to be

further sequenced. Mismatches are labeled as yellow dots.
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Figure 4.2: Binary counting program on naturally-occurring sequences.

(A) Molecular program implementing addition by 1 of a binary string on an example register. The

top register shows the initial state of each cell. After 7 instructions, the register updates to the

state shown at the bottom. Strand colors have three information categories: state 1 (purple),

state 0 (pink), intermediates (other colors). Solid boxes show the instruction strands and the state

of the register before the strands are applied. Dashed boxes explain the logical operation of the

instructions. The overhang domains a and b are orthogonal to their vertically aligned domains.

(B) (left) Locations of registers on the M13mp18 phagemid. (right) Mismatches (labeled as yellow

dot) are introduced in top strands representing state 1. (C) Single data binary counting on register

M13.8. For each initial value, the distribution of the output values are represented in the heat-map

matrix. Lower bar plot shows an example of the data in one row of the heat map: the distribution

of output values on reads associated with initial value “1011”. (D) Multiple data Binary Counting

on register M13.8. (E) Multiple data Binary Counting on register M13.7 and M13.9 in parallel. In

all the heat maps, the correct output value is indicated by a white and black border; values that

appear in > 25% of all reads for a given sample are marked by text.
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Figure 4.3: Sanger assessment of M13 Register addresses for 0010 and 0111.

Mismatches to the native sequence as determined by Sanger are marked by a yellow circle. Compu-

tation products were sequenced both in forward and in reverse to maximize high-quality coverage

of product and to improve confidence in base calls. Fwd = Forward read, Rev = Reverse read.

Digits at which two bases show peaks of similar height are marked with a“?”.
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Figure 4.4: SIMD||DNA single data binary counting program using M13 sub-

registers 3 and 8.

(A) Independent assembly of initial values on M13 sub-register 8. (B) Independent assembly of

initial values on M13 sub-register 3 (left) and single data binary counting (right).
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Figure 4.5: Sanger assessment of different instruction temperatures for binary

counting on M13 sub-registers 7, 8, and 9.

Mismatches to the native sequence as determined by Sanger are marked by a yellow circle. Compu-

tation products were sequenced both in forward and in reverse to maximize high-quality coverage

of product and to improve confidence in base calls. Fwd = Forward read, Rev = Reverse read.

Digits at which two bases show peaks of similar height are marked with a“?”.
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Figure 4.6: Multiple data readout of independently assembled initial values on

M13 sub-register 8.
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Figure 4.7: Multiple data binary counting on M13 sub-registers 7 and 9.

(A) Initial values were independently assembled on M13 sub-register 7 and mixed together (left),

then binary counting was performed on the register. (B) Initial values were independently assembled

on M13 sub-register 9 and mixed together (left), then binary counting was performed on the register.
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Figure 4.8: Assembly of initial values on M13 sub-registers 7 and 9 on the same

M13 plasmids.

117



seal

B

11 10

A 10

displacement

add adaptor

Po
st

-c
om

pu
ta

tio
n 

pr
oc

es
si

ng

ligation

PCR amplification

t

t

t

t

t*

Rule 110

..
.

t

t

t

t

Figure 4.9: Rule 110 computation with chemically synthesized DNA.

(A) Post-computation process for the Rule 110 program with chemically synthesized DNA. After

computation, a set of “seal” strands are added to the register to fill in the gap for cells representing

bit 1 for the following ligation step. (B) Multiple data Rule 110 computation on 16 registers with

unique initial values. The correct output value is indicated by a white and black border; values

that appear in > 25% of all reads for a given sample are marked by text.
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Figure 4.10: Program implementation of one timestep of Rule 110 shown on an

example register.

The top register shows the initial state of each cell. After 6 instructions, the register updates to the

state shown at the bottom. Strand colors have three information categories: state 1 (dark blue),

state 0 (light blue), intermediates (other colors). Solid boxes show the instruction strands and the

state of the register before the strands are applied. Dashed boxes explain the logical meaning of

the instructions. The overhang domains a and b are orthogonal to their vertically aligned domains.
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Figure 4.11: Readout of initial values assembled on chemically synthesized

oligonucleotides designed register sequence prior to the computation done in

Figure 4.9.
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Figure 4.12: Rule 110 computation on M13 sub-register 1.

Readout of combined initial values (independently assembled) is on the left; multiple data compu-

tation is on the right
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Figure 4.13: Random access with chemically synthesized DNA.

Sequential random access for the Rule 110 algorithm. Following Rule 110 computation, registers

with initial value “0011” were accessed first (top), “1001” second (middle), and all remaining values

last (bottom).
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Figure 4.14: Parallel random access for the binary counting algorithm.

Computation is performed independently on multiple samples, after which a unique initial value is

accessed from each sample. 14 initial values (0000 to 1101) were accessed in parallel following one

round of binary counting. In parts B and D the correct output value is indicated by a white and

black border; values that appear in >25% of all reads for a given sample are marked by text.
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Figure 4.15: Data erasure by random access.

Red arrow indicates barcoded register that was previously accessed.
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Figure 4.16: Multiple rounds of sequential computation with chemically synthe-

sized DNA.

(A) Sequential computation of the Rule 110 program. Results are normalized to the total read

count for each sample. Reads with one or more indeterminate digits were excluded. Lower pan-

els show the distribution of outputs values for initial values “0001” and “1101”. (B) Sequential

computation of the binary counting program. In both the lower panels of (A) and (B), the correct

value is indicated by a white and black border; values that were observed in > 25% of all reads are

labeled.
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Figure 4.17: Quantifying the loss of SIMD products following washing and com-

putation steps.

(A) SIMD products from the Rule 110 algorithm were quantified by both qPCR (top) and elec-

trophoresis (bottom). The calculated percent yield is shown in text, as well as the Cq and con-

centration as determined by qPCR and the BioAnalyzer, respectively. (B) Yield quantified by

qPCR for Rule 110 sequential computation. In combination with the results from (A), each round

of computation resulted in about 60% to 75% product loss. The value in the parentheses is the

percent of product detected relative to the control (aka assembly) as described in (A). Note that

the concentration of displacement strands and washing procedures are slightly different than in

(A), which could account for the discrepancy in the yield from control/assembly to the first round

of computation.
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Figure 4.18: Theoretical maximum rounds of computation possible for storing

various numbers of unique registers.

We made the following assumptions for the calculation: (1) Each round of computation except the

final round has a yield of 56.25% (since products are only washed and not ligated). (2) The final

round of computation has a yield of 38.25% due to ligation. (3) The reaction volume is 25 µL and

the starting total register concentration is 80 nM (i.e. starting with 1.2e+12 strands or 2 pmoles).

(4) PCR is capable of amplifying as few as 10 copies of each register in the reaction volume. (5)

There must be at least 1 copy of each unique register to determine data.
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Chapter 5

Reading out in vitro transcription networks with

high-throughput sequencing1

Abstract. Synthetic in vitro transcription networks have recapitulated complex

and dynamic behaviors found in biological systems, such as oscillations and bistable

switching, with minimal machinery. These networks have both elucidated princi-

ples for building artificial biochemical networks and demonstrated the computing

capabilities of in vitro transcription regulatory elements. Here, we expand on the

scalability and toolkit of transcription networks by modifying our previous single-

stranded transcription switch and developing an associated protocol to read all

signals, including intermediate signals, using next-generation sequencing. Addition-

ally, we present a single-stranded transcription switch that activates upon binding

by a cognate signal strand.

1This chapter includes original work by SSW. SSW received funding for the project from Andrew Elling-

ton. SSW would like to thank Shaunak Kar for helpful discussions.
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5.1 Introduction

Synthetic biology aims to create biochemical circuits to address a broad range of

applications from disease diagnostics to biosynthesis of precious compounds. At their core,

these circuits process chemical information, and engineered genetic circuits have been demon-

strated to achieve computational tasks from simple boolean logic to molecular pattern recog-

nition, as well as dynamic behaviors. Key challenges towards this goal are the modularity

and predictability of circuit components. Nucleic acids adhere to predictable Watson-Crick

base pairing rules [161, 62] and well-studied kinetics [225, 124], making DNA and RNA

programmable substrates that can be used to implement minimal synthetic biochemical net-

works. This has enabled DNA nanotechnology for molecular detection [118], computation

[152, 153, 34], and nanoscale actuation [172, 213] to be built de novo.

Despite their modularity and programmability, nucleic acid-based circuits suffer from

issues of scalability and broad use. First, if the goal is to interface with biological systems,

a protein, mRNA, or other biologically potent output must be produced or unlocked by the

computation. However, conventional DNA computing solely involves DNA oligonucleotides

and their hybridization reactions, making it difficult to actuate biological responses. To

address this, previous works have explored the regulation of transcription [110, 167, 38] and

translation [81, 80] through strand displacement reactions that result in the synthesis of new

RNA strands in vitro or a phenotypic response in vivo. Second, most nucleic acid circuits in-

volve multi-stranded complexes, which require time-consuming stoichiometric annealing and

purification prior to use. This may become impractical as the number of total components

scales. Some transcriptional circuits have addressed this issue by using single-stranded switch

elements [104] or inserting self-cleaving ribozymes [168], both of which ensure a one-to-one
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assembly of components. Third, fluorescence is typically used for immediate, real-time read-

out. However, this mode of readout has limited ability for multiplexed output. Stochastic

photoswitching presents one solution to this challenge [103], while alternative readout meth-

ods such as sequencing (as presented in Chapter 3) could enable unlimited monitoring of all

components involved.

Here we adapted our previously reported single-stranded transcription switch for

quantitative, multiplexed readout using next-generation sequencing (NGS). We updated the

transcribed RNA signals such that all products included in a network may be read and

identified using RNA-Seq. To expand the toolkit of transcription switch elements, we ad-

ditionally present a single-stranded transcription switch that is activated by hybridization

with a cognate DNA signal. Our results present alternatives to conventions used in DNA

computing that could improve the scalability of rationally designed nucleic acid circuits.

5.2 Results

5.2.1 High-throughput readout of in vitro transcription networks

The transcription hairpin is a hemi-duplex hairpin that acts as a transcription tem-

plate for T7 RNA polymerase (T7 RNAP) conditional on the state of its promoter sequence.

In the active state, it consists of a double-stranded T7 promoter sequence region, a single-

stranded DNA loop, and a single-stranded templating region [104]. In the inactive state, an

upstream signal strand binds to the loop and partially binds to the T7 promoter sequence,

thereby separating the top and bottom strands of the promoter and prohibiting initiation by

T7 RNAP. The hairpin switch is responsive to both single-stranded DNA and RNA signals

130



that include a complementary sequence to the hairpin loop region (i.e. cognate signals). It

can implement NOT and NAND logic on inputs and transcribe an RNA signal as output. We

modified our previously reported hairpin switches to be compatible with sequencing readout

by extending the template region to include a signal-specific barcode [85] and a common

reverse transcription priming site (Figure 5.1A). Following transcription, DNA templates

and input signals are removed from the samples using DNase I, the treated samples are

reverse transcribed, and signals are read out with qPCR (for singleplex signals) or PCR

amplified and read out with NGS (for multiplex signals) (Figure 5.1B). This process can

be scaled up through sample-specific barcodes that are introduced with PCR primers. To

test these modifications, we designed several sequencing-compatible switches with different

loop (input) and transcribed (output) signal sequences using NUPACK [218]. We confirmed

transcription of signal RNAs at the expected size in the absence of the inhibiting signal by

PAGE (Figure 5.2).

The transcription of the modified switch can be similarly observed using NGS, qPCR,

or fluorescence. We designed a hairpin switch (H2) encoding the Spinach RNA aptamer [149]

as well as an upstream hairpin (H1) that produces the cognate inhibiting RNA signal. The

transcription activity of H2 in the absence or presence of upstream DNA signal (Inh2) or H1

was measured as the fluorescence signal. In the presence of Inh2 at 2X concentration, the

transcription activity of H2 ws at background, and in the presence of H1 at 2X concentration,

transcription was reduced by about 60% (Figure 5.3A). In parallel, we designed a sequencing-

compatible version of the hairpin and performed qPCR quantification with the Cq as a

readout of relative concentrations. In the presence of the upstream inhibitor signal (OFF

state), transcription activity was decreased to 37% of the ON state (Figure 5.3B). Finally, we
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used NGS to measure the output, with the read count as the signal. We observed a graded

response over a range of Inh2 concentrations. The maximally inhibited case (i.e. 400 nM of

inhibitor) showed about 30% activity as compared to the uninhibited activity (Figure 5.3C).

One reason for the diminished inhibition is that the concentration of templates in these assays

exceeded the saturation concentration for T7 RNAP. Operating at a higher concentration

of T7 RNAP should result in an improved response that is more responsive to changes in

active template concentration.

NGS readout allows the signals of all switches in a network to be read out at once.

We constructed a network of three inhibitors in series and observed their individual activities

in response to increasing concentrations of Inh1 (Figure 5.4A). As expected, the activity of

the first switch (H1) showed the largest dynamic range. The second switch (H2) showed

the expected relative activities for up to 200 nM of Inh1. Beyond 200 nM, however, H2’s

inhibition response was no longer observed; this was explained by the saturation of H1 to

input concentrations above 300 nM. We additionally used NGS to observe the transcription

activities of two switches in series in response to varying switch concentrations (Figure 5.4B).

As the signal for H1 (Inh2) increases with increasing concentrations of H1, inhibition of the

downstream H2 switch saturates at around 50%. Multiplexed signal readout shows the

individual response of components in a network for more transparent troubleshooting.

5.2.2 Towards a single-stranded in vitro transcription activating promoter switch

In an effort to expand the capabilities and scale of transcription-based networks, we

sought to develop a single-stranded transcription activator analogous to the hairpin switch

inhibitor. Multi-stranded conditionally-active transcription gates have been previously pre-
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sented [110] that require stoichiometric annealing and PAGE purification prior to use. In

our design, we aimed to satisfy the following requirements: switches must be single-stranded

DNA, contain both the sense and antisense T7 promoter sequences, and respond only to

cognate signals with a complementary sequence. From the first two requirements, it follows

that in the absence of an activating signal, the activator is capable of forming an active

double-stranded promoter and subsequently may leak signal. The inactive conformation

(i.e. single-stranded promoter) must be more energetically favored in order to compete with

the active conformation. To this end, we created a hemi-duplex activator that, in the inac-

tive state, adopts multiple degenerate states that are at equilibrium with one another. The

activator contains a single-stranded loop that disrupts the bottom strand of the promoter

and “slides” between a range of positions. The range of this sliding loop is bounded by

its sequence complementarity with the promoter. In the presence of an activating signal,

hybridization between the signal strand and the activator stabilizes the active conformation,

producing a stable double-stranded promoter region (Figure 5.5A)

To determine the downstream boundary of the sliding loop, we tested positions where

the insertion of a single-stranded loop would disrupt transcription activity. We placed a 17

nt polyT loop at several locations between -17 and -7 (relative to initiation start site) in

the templating strand of a double-stranded T7 promoter. This promoter was upstream

of a malachite green RNA aptamer sequence and part of an otherwise linear transcription

template. We avoided positions downstream of -5 because insertion of a loop here would

not disrupt the specificity region [30] and could potentially still allow T7 RNAP to bind.

This may lead to stalled enzymes in the OFF state and a delayed response to signal. On

the other hand, we did not want to limit the sliding loop to positions further upstream (e.g.

133



upstream of -15) because a large fraction of switches in the inactive state would contain

double-stranded promoters. Fluorescence transcription assay results showed that positions

-13, -10, and -7 had similar decreases in activity, with the largest decrease at position -7

with a 3-fold reduction from a linear promoter (Figure 5.4B). We therefore proceeded with

-7 as the downstream boundary.

We used NUPACK for the sequence design of the activators. Because the ON state

involves a pseudoknot base pairing configuration, which is not supported by NUPACK, we

separated the activator into two strands for the purposes of design. We then tested two

versions of input strands: one with a complementary partial spacer sequence and another

without (Figure 5.5C). We included a malachite green aptamer sequence in the templating

region for fluorescence readout. In the presence of the signal strand, transcription activity

was about 60% and 50% relative to a hemi-duplex hairpin template control for input versions

1 and 2, respectively (Figure 5.5D). In the presence of non-cognate or “scrambled” inputs

(i.e. non-matching stem region), activity was reduced by 2.2-fold and 13.9-fold relative to

the cognate input for designs 1 and 2, respectively.

5.3 Discussion

The observation of similar patterns of inhibition across different modes of readout

shows that alternatives to fluorescence can be used to read transcriptional network output.

Several remaining issues should be addressed to improve the consistency, strength of inhibi-

tion response, and scalability. First, the total concentration of switches in a network should

be lower than the saturating concentration for T7 RNAP, and the concentration ratio be-
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tween the total switch and enzyme should be kept constant across assays. This is because T7

RNAP transcription follows Michaelis-Menten enzyme kinetics, which dictates that rate of

transcription is dependent on the concentration of available substrate (i.e. double-stranded

promoters). This can be done by first determining the saturating concentration of T7 RNAP

(by titrating a constant concentration of T7 RNAP with different concentrations of ON state

switches) and later by adding an orthogonal “normalization” switch to networks to main-

tain the total switch concentration. Introducing an additional layer of barcoding at the

reverse transcription step with barcoded primers could improve both consistency and scal-

ability, thus ensuring that concentrations of signals are subject to the same fluctuations in

the following processing steps.

Given the response of the hairpin activator switch to DNA signals, RNA signals

should be tested to assess the utility of this switch design for layered transcription networks.

Additionally, as with inhibitor switches, it is likely possible to adapt signals for multiplexed

readout using NGS. Ultimately, the activation response should be improved prior to combin-

ing activator switches with inhibitor switches, since the current activator design has about

60% activity relative to ON state inhibitors. Increased activation would also enable deep

networks to lose less signal over layers. Some adjustments to the activator switch design may

potentially improve the signal-to-noise ratio. Reducing the length of the conserved region

would destabilize binding overall and cause signal binding to become more dependent on

sequence complementarity to the activator, thereby weakening partial stabilization by non-

cognate signals. Altering the upstream “GC” clamp either to “AT” or an AT-rich sequence

may improve transcription, as previous studies have reported increased transcription activity

for an extended dsDNA region upstream of the promoter [10], particularly with an AT-rich
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sequence [188].

5.4 Materials and Methods

Oligonucleotides and reagents. All oligonucleotides were purchased as custom

oligonucleotides from IDT. Unless otherwise noted, all enzymes and reaction buffers were

purchased from New England Biolabs and all chemical reagents were purchased from Sigma

Aldrich.

Hairpin switch in vitro transcription for sequencing readout. Prior to in vitro

transcription, templates (linear and hairpin) were individually annealed to a final solution of

4 uM in 1X T7 Annealing Buffer (10 mM Tris-HCl pH 8.0, 100 mM NaCl) with the following

heating protocol: 5 minutes at 95◦C, ramp down at 0.1◦C/s to 25◦C, 5 minutes at 25◦C,

hold at 4◦C until use. Unless otherwise noted in figures, transcription reactions were 20 µl

each and contained a 200 nM of each template (linear or hairpin), 10 U/µl (about 200 nM)

of T7 RNAP, 5 mM of each NTP, 5 mM DTT, 1X T7 Buffer (NEB), and any concentration

of DNA input signal specified in the figures. Transcription reactions were incubated at 37◦C

for 4 hours on a standard thermocycler.

Sample preparation for sequencing. Following transcription, reactions were

treated with DNase I to remove templates in the following reaction mix: 12 µl of the tran-

scription reaction, 4 units of DNase I (NEB), 1X DNase I Buffer (NEB), and nuclease-free

water added to a final volume of 30 µl. Reactions were incubated at 37◦C for 30 minutes, then

EDTA solution was added to each reaction to a final concentration of 5 mM, and the reac-

tions were incubated for 5 minutes at 75◦C to inactivate enzymes. Reverse transcription was
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then performed with the following reaction mix for each reaction: 5 µl of the DNase-treated

RNA product, 500 nM of RT primer, 15 units AMV RT, 2 units murine RNase Inhibitor, 1

mM each dNTP (ThermoFisher), 2 mM MgCl2, 1X AMV RT buffer, and nuclease-free water

added to a final volume of 20 µl. Reactions were incubated for 1 hour at 42◦C, followed by

5 minutes at 80◦C for inactivation and stored at -20◦C until use.

To prepare samples for NGS, cDNA samples were pooled by combining equal amounts

of each sample across barcodes. The pooled samples were cleaned using a QIAquick PCR

Purification Kit (Qiagen, 28104) according to manufacture’s instructions with these excep-

tions: the sample-bound column was washed with PE buffer 3X and cDNA was eluted in

30 µl nuclease-free water. Pooled samples were then PCR-amplified with the following mix:

1.5 µl of cleaned pooled cDNA, 500 nM each of forward and reverse primers containing

indexed NGS adaptors, 0.4 U Q5 DNA polymerase, 400 nM of each dNTP, 1X Q5 Buffer,

and nuclease-free water added to a final volume of 20 µl. The sample was heated with the

protocol: 3 minutes initial melting at 98◦C, 16 cycles of amplification - 30 seconds of melting

at 98◦C, 30 seconds of annealing at 65◦C, and 30 seconds of extension at 72◦C - followed

by a 3 minute final extension at 72◦C and was stored at 4◦C until use. Amplified samples

were cleaned again according to manufacturer’s instructions using the QIAquick kit, with

the exceptions listed above, and stored at -20◦C until sequencing.

Sequencing and analysis. Samples were sequenced with either on the Illumina

MiSeq platform at the University of Texas Genome Sequencing and Analysis Facility using

the MiSeq v2 500-cycle kit (MS-102-2003) or on the iSeq 100 platform using the iSeq 100 i1

Reagent v2 300-cycle kit (20031371). Because the samples contained large regions of identical

sequences and therefore contain low base diversity, high base diversity samples (e.g. Illumina
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PhiX, NEB HeLa genomic DNA) was added to form a high proportion (> 50%) of each run.

After NGS, reads were sorted into their respective samples by the i5 and i7 indices of the

read. Each read was identified as a transcribed signal using its signal-specific barcode. Up to

1 mismatch was tolerated in this barcode for identification; reads without a barcode match

were removed from analysis. All analyses were performed in Python.

Fluorescence-based in vitro transcription assays. In fluorescence assays for

hairpin inhibitors, a hairpin switch templating the Spinach aptamer [149] was used. For

the spinach aptamer transcription assay, reaction mixes were as previously described for

sequencing readout with the following exceptions: DFHBI solution in DMSO was added to

a final concentration of 50µM, and each reaction contained 5 U/µl (∼100 nM) of T7 RNAP

instead of 10 U/µl (∼200 nM). Following transcription, 18 µl of each reaction was transferred

to a Nunc black flat bottom plate 384-well and the end point was measured with a Tecan

Infinite M200 plate reader at 469 nm excitation and 501 nm emission.

For assays with hairpin activators, transcription templates included the malachite

green aptamer [12]. The composition of the transcription mix was as previously described

for sequencing readout with the following exceptions: Malachite Green dye solution in water

was added to a final concentration of 25 µM, and each reaction contained 5 U/µl ( 100 nM)

of T7 RNAP instead of 10 U/µl (∼200 nM). Kinetic measurements at 630 nm excitation

and 664 nm emission were collected every 3 minutes over the transcription period and the

reported signal is the average of the final 5 measurements for each sample.

qPCR analysis. Samples were reverse transcribed but not pooled together. cDNA

samples were similarly cleaned using a QIAquick kit. The qPCR heating protocol was the

same as that for PCR with the exception that amplification was carried out in a LightCy-
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Figure 5.1: Next-generation sequencing-compatible hairpin switch.

A. Sequence design (top) and circuit diagram abstraction (bottom). Gray circles represent single-

stranded signal and colored circles represent hairpin switches. Solid outlines represent DNA and

dashed outlines represent RNA. B. Protocol for reading transcriptional output.

cler96 qPCR machine (Roche) and measurements were taken at the initial melting step, each

extension step, and the final extension step. The qPCR mix was the same as the PCR mix

with the addition of a final concentration of 1X EvaGreen dye (#31000). Cq of samples was

determined using the LightCycler96 software (Roche).
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Figure 5.2: Transcribed products of sequencing-compatible hairpin switches.
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Figure 5.3: Measuring transcription inhibition using different readout methods.

A. Fluorescence assay. B. qPCR quantification. Percent value is calculated from Cq C. NGS read

count.
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Figure 5.4: Multiplexed signal readout with NGS.

A. Network response as a function of DNA input concentration. DNA input inhibits the H1,

which produces RNA signals that inhibit H2, etc. B. Network response as a function of switch

concentration. Inhibition is caused by RNA transcribed by switch H1.
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Figure 5.5: A single-stranded transcription activator switch.

A. Mechanism of transcription activation. In the OFF state, the activator exists in a mixture of

degenerate states with the loop sliding between different positions. B. Disruption of transcription

activity by insertion of a polyT loop in the templating strand. C. Sequence designs and activation

complex for two versions of inputs. D. Activation fluorescence assay.
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Appendix A

Recovery of information stored in modified DNA with

an evolved polymerase1

Abstract. DNA is increasingly being explored as an alternative medium for digital

information storage, but the potential information loss from degradation and as-

sociated issues with error during reading challenge its wide-scale implementation.

To address this, we propose an atomic-scale encoding standard for DNA, where

information is encoded in degradation-resistant analogues of natural nucleic acids

(xNAs). To better enable this approach, we used directed evolution to create a

polymerase capable of transforming 2’-O-methyl templates into double-stranded

DNA. Starting from a thermophilic, error-correcting reverse transcriptase, RTX,

we evolved an enzyme (RTX-Ome v6) that relies on a fully functional proofreading

domain to correct mismatches on DNA, RNA, and 2’-O-methyl templates. In addi-

tion, we implemented a downstream analysis strategy that accommodates deletions

1This appendix is adapted from a manuscript by Shroff R, Ellefson JW, Wang SS, Boulgakov AA, Hughes

RA, and Ellington A.D (2020). JE devised the project and carried out protein evolution experiments and

assays. RS analyzed the NGS results and sequence decoding. AAB designed and performed the encoding

scheme using DNA Fountain. RAH synthesized the modified and unmodified oligonucleotide pools. RS, JE,

SSW, and AE wrote the manuscript with feedback from all authors.
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that arise during phosphoramidite synthesis, the most common type of synthesis

error. By coupling and integrating new chemistries, enzymes, and algorithms, we

further enable the large-scale use of nucleic acids for information storage.

A.1 Introduction

Global data aggregation is expected to outstrip society’s storage capacity; by 2025,

163 zettabytes of data will be generated annually [187]. Accommodating this growth strains

data centers with an unending battle of scalability. Where traditional electromechanical data

storage technologies exhibit defined obsolescence, sensitivity to temperature and humidity,

and significant energy maintenance cost, DNA data storage benefits from stability on the

order of thousands of years, robustness to a broad range of environmental conditions [11],

and a theoretical information density of 455 exabytes per gram of DNA [39] (215 petabytes

per gram demonstrated experimentally [59]). Though the latency of information retrieval

from DNA prohibits its use in real-time access, it does provide an attractive solution for

large archival storage.

At present, molecular data storage is primarily developed using native DNA, in large

part because a wide range of enzyme tools are available to reliably read, write, and, to a

limited degree, edit information stored in DNA, while very few enzymes are known to be

capable of utilizing nucleic acid analogues to a similar degree. Storing data in chemically

modified oligonucleotides could not only expand the space of data archival technologies (for

instance, multiple independently addressable channels of data) but might also help resolve

roadblocks to the widespread use of DNA archives as a supplement to digital archives. These
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include data loss arising from sequencing (high-throughput sequencing has error rates be-

tween 0.1% and 0.01% [85]), synthesis (oligonucleotide synthesis has error rates of around

0.5%, but significant errors accumulate at lengths beyond 100 nucleotides [93]), and degra-

dation in the presence of contaminants. Efforts to combat such errors can be broadly catego-

rized into chemical approaches (e.g. improved phosphoramidite chemistry or template-free

enzymatic oligonucleotide synthesis), biochemical approaches (e.g. improved sequencing er-

ror rates, costs, and throughput) and algorithmic approaches (e.g. error-tolerant encoding

schemes). Most efforts currently center on algorithmic approaches, with both public and pri-

vate sectors exploring error-resistant or degradation-tolerant information encoding schemes

[39, 59, 74, 77, 17, 138].

Biochemical innovations in the underlying nucleic acid storage “hardware” can com-

plement algorithmic developments by providing more robust information-storage substrates

and the corresponding enzymatic machinery for efficient reading and writing. We therefore

propose a new paradigm for long-term nucleic acid data storage that uses naturally nuclease-

resistant, chemically-modified nucleic acids. Critical to the goal of modified oligonucleotide

data storage is the ability to easily read the encoded information at scale via sequencing. To

this end, we have encoded information in highly stable 2’-O-methyl RNA, which is known to

resist degradation by several ribonucleases as well as deoxyribonucleases [115, 217, 42]. In

parallel evolved a polymerase with error-correcting capabilities that can read out the encoded

information. Additionally, we present a bioinformatic strategy to retrieve encoded messages

with multiple deletions arising from low synthesis fidelity. Overall, our results show the

viable and valuable co-development of nucleic acid, protein, and computational components

for improved DNA data storage.
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A.2 Results

A.2.1 Evolution and characterization of a polymerase that could read 2’-OMe

DNA

To develop an enzyme that was capable of reading 2’-O-methyl (2’-OMe) modified

templates, we built off of previous efforts to evolve a thermostable, error-correcting reverse

transcriptase enzyme (RTX), starting from an Archaeal family B DNA polymerase [57]. Pre-

viously, enzymes capable of reading 2’-O-methyl-modified templates have been engineered

from the family A DNA polymerase Taq [32, 169] or derived from recombinant sources [21];

however, high-fidelity, proofreading polymerases more suited to long-term information stor-

age have not previously been explored. RTX proved capable of accurately reverse transcrib-

ing RNA into DNA, but also showed minimal activity on 2’-OMe RNA (Figure A.5A). To

further encourage the adoption of 2’-OMe templates by RTX, we made modifications to the

emulsion-based selection scheme, reverse transcription compartmentalized self-replication

(RT-CSR) [69]. In this scheme, polymerase variants are expressed in bacteria, which are

subsequently ensconced within a water-in-oil emulsion mixture (Figure A.1). Upon thermal

cycling, individual bacteria lyse, and individual polymerase variants gain access to primers

that allow amplification of their own genes. In the current instance, these primers contain

2’-OMe residues, which the polymerase must be able to read through in order to complete the

amplification of its own gene, which can then be carried into subsequent rounds of cloning,

expression, selection, and amplification.

Starting from RTX, error-prone PCR was used to generate diversity, and bacteria

expressing individual variants were emulsified with modified primers. The stringency of

selection was tuned by gradually increasing the number of challenge positions in primers
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over the course of evolution. For example, the challenge region initially contained a run

of 5x 2’-OMe nucleotides in each primer; this number was progressively increased through

the course of the selection until it reached 81 2’-OMe bases in the 18th and final round of

selection (Table A.1).

After the final round of selection the library as a whole was examined via next-

generation sequencing (NGS), revealing several predominant mutations (Figure A.2, Ta-

ble A.2). Near the template entry site, the E251K and Q242R mutations increase the net

positive charge and may provide tighter binding to the negatively charged backbone. The

G498A and G350V mutations increase hydrophobicity near the 2’ moiety at the +1/-1 po-

sitions. Mutations in the finger domain (I488L and K468N) may alter the overall fit of the

helix (which is now more A-form than B-form) to the polymerase, an outcome that was also

observed in the original selection for RTX.

Based on the distribution and predominance of the accumulated mutations, we ratio-

nally constructed a series of variants (Table A.3); mutations that were likely to inactivate

the proofreading domain (a common outcome of selections for polymerase activity) were ex-

cluded from the rational design. Six designed variants (but not the ancestral enzyme) proved

able to reverse transcribe a template with 44 sequential 2’-OMe bases. Of the six variants

constructed, one (RTX-Ome v6) exhibited the most robust capability to use O-methyl sub-

strates as templates, and was chosen for further analysis (Figure A.3). Since DNA:OMe

duplexes are structurally closer to DNA:RNA than DNA:DNA duplexes, the similar exten-

sion profiles for the OMe and RNA templates matched our expectations and further support

the hypothesis that the mutations in RTX-Ome v6 improve its ability to utilize A-form he-

lices. This variant also surprisingly retained the ability to reverse transcribe RNA, perform
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PCR amplification, and proofread on DNA templates, making it a generally useful enzyme

for molecular biology applications.

A.2.2 Encoding and recovery of DNA files

In order to demonstrate the utility of RTX-Ome v6 in information storage appli-

cations, we sought to store and recover information in 2’-OMe oligonucleotides with our

engineered enzymatic tool. We transformed a series of short text files into unmodified DNA

and a similar set of files into 2’-OMe RNA (Figure A.4A) using a previously reported “DNA

Fountain” encoding scheme, which we chose based on its efficient encoding density, built-

in substitution error correction, and erasure correction [59]. In total, the unmodified and

modified files were encoded into 4000 and 2000 oligonucleotides, respectively, with only

the modified oligonucleotides containing a modulo 2000 seed to ease downstream recovery.

Oligonucleotide pools were individually synthesized on a 12k Customarray oligonucleotide

chip, with a 16-nucleotide seed region for positional identification, 64 nucleotides of data con-

taining payload, and 8 nucleotides containing a Reed-Solomon code. As redundancy is built

into the encoding scheme, our simulations suggested that we would require an average of

2784 +/- 58 oligonucleotides to recover the unmodified files and 1245 +/- 46 oligonucleotides

for the modified files (Figure A.6).

In order to show that we could selectively recover the information encoded in modified

oligonucleotides, the unmodified DNA and modified DNA pools were mixed in a 1:20 ratio.

RT-PCR was then used to amplify the oligonucleotides and append appropriate adapters

for NGS. Beyond RTX-Ome v6, four additional polymerases (KOD, RTX, and a mix of

MMLV/Taq) were assayed for their ability to recover either unmodified or modified DNA
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(or both). RTX-Ome, along with the other three control polymerases, successfully amplified

the unmodified oligonucleotide sequences, leading to their full recovery (Figure A.4B).

A.2.3 Computational strategy for reading modified strands

Initially, following sequencing of our oligonucleotide libraries we discovered deletions

in virtually every sequencing read. Because deletions were systematic across all libraries,

we attribute these errors to oligonucleotide synthesis (Figure A.7). While DNA decoding

schemes do have error-checking mechanisms (like the use of a Reed-Solomon code), these are

primarily suitable for correcting substitutions and do not generally correct for indels, despite

the fact that this may encompass the majority of oligonucleotide synthesis errors [85].

Because deletion errors during synthesis are common, especially when modified nu-

cleotides are utilized, we developed a reconstruction method to account for deletions in NGS

reads that expands on the DNA Fountain decoding scheme. Assuming that the deletions

appear randomly, redundant coverage can be used to reconstruct the original sequence via

sequence alignment. We created bins of similar oligonucleotides through sequence cluster-

ing and performed multiple sequence alignments on each bin to build consensus sequences

(Figure A.8). If the length of the consensus sequence was less than the expected length for

the read, gaps were filled by inserting positions at which a non-gapped base occurred most

frequently and iterated to find a sequence that best matched the designed GC content, ho-

mopolymer stretch, and Reed-Solomon code. Reads that were more intact were given higher

weight in the consensus search.

Our strategy ultimately generated a consensus sequence for each bin of strands that

contains the data payload. We then used the DNA Fountain decoding mechanism to further
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translate these consensus sequences and the random seed, and thus to reconstruct the orig-

inal message. Fountain codes are inherently resilient to information loss, in that message

reconstruction can still occur with missing packets; however, this type of data is especially

sensitive to data corruption and information fidelity may be compromised. Thus, to fix

possible “corruption” in our sequences, we further modified the decoding program to better

accommodate potential, practical errors. Our solution was to give more weight to sets of

sequences that were able to quickly reach a consensus (in 20 iterations or fewer) and then

perform 1000 trials with different permutations of the other sequences as randomized sets. In

addition, we used the md5 checksum to decode the message. In cases where trials produced

different checksums (as was the case with KOD and RTX-Ome), the correct checksum was

observed most frequently and no other checksum appeared more than once. To show the

robustness of our decoding strategy, we repeated the method on a random sample subset

containing 10% of our reads and observed fully correct recovery. Overall, RTX-OMe was the

only one among the three tested Archaeal family B, error-correcting polymerases that was

able to correctly recover the 2’-OMe-encoded files (Figure A.4B).

A.3 Discussion

The storage of information in modified nucleic acid templates may eventually be a

generally viable option, if several obstacles are overcome. First, more polymerases that can

be readily adapted to a variety of nucleic acid analogues (xNAs) will likely prove key. In

addition to the proofreading enzyme RTX-OMe, the viral reverse transcriptase MMLV RT

is capable of reverse transcribing 2’-O-methyl RNA into DNA ([52]; Figure A.4B) and could

therefore also potentially enable a 2’-O-methyl data reading scheme in conjunction with Taq
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polymerase. Broadly speaking, however, for most xNAs there are no known RTs or poly-

merases capable of reverse transcription into sequencing-compatible DNA, especially at the

low error rates amenable for data storage [156]. Therefore, the fact that RTX itself had initial

broad specificities suggests that it might prove to be a useful starting point for engineering

numerous high-fidelity, xNA-compatible polymerases. Indeed, the proofreading capabilities

available via RTX may ultimately be compatible with further evolved xNA polymerases with

more dramatically altered sugar backbones such as, HNA, LNA, or TNAs, enabling high fi-

delity reverse transcription of exotic substrates. Additionally, given that non-proofreading

DNA polymerases have been evolved to utilize fully 2’-O-methyl modified templates or syn-

thesize fully-modified products [32], it may be feasible to further engineer RTX-OMe to both

utilize and transcribe fully-modified oligonucleotides for protected storage schemes. Second,

even with improved proofreading, the errors and limitations inherent in both reading and

writing require encoding schemes with error correction or tolerance for high error rates at

both the software and hardware levels [59, 77, 17, 138, 187]. Fortunately, our computa-

tional method’s primary dependence on universal alignment parameters (match, mismatch,

gap opening, and gap extension scores) and sequence properties (GC content, homopolymer

stretch) suggests that it should not only be applicable to various types of consensus searches,

but also easily scale with the number of sequences.

Overall, modified nucleic acids offer an attractive, nuclease-resistant medium for long

term data storage, especially when read out by evolved, low-error xenopolymerases and an

associated, deletion-robust information decoding algorithm. Such xNA systems for informa-

tion storage could also potentially provide a steganographic and cryptogenetic approach to

hidden message storage among otherwise normal information, where privileged information
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could only be discovered with privileged polymerases (Figure A.9). More broadly, with the

development of multiple xNA-specific xenopolymerases, it may be possible to encode infor-

mation in separate channels (i.e. sugar backbone variants) and to independently retrieve the

information in each channel using a channel-specific polymerase.

A.4 Methods

Reverse Transcription CSR (RT-CSR). RTX polymerase libraries were created

through error prone PCR (unless otherwise indicated) to have a mutation rate of 1-2 amino

acid mutations per gene. Libraries were cloned into tetracycline inducible vector and electro-

porated into DH10B E. coli. Library sizes were maintained with a transformation efficiency

of at least 106, but more typically 107-108. Induced overnight library cultures were seeded

at a 1:20 ratio into fresh 2xYT media supplemented with 100 µg / mL ampicillin and grown

for 1 hour at 37◦C. Cells were subsequently induced by the addition of anhydrotetracycline

(typically at a final concentration of 200 ng/mL) and incubated at 37◦C for 4 hours. In-

duced cells (200 µL total) were spun in a tabletop centrifuge at 3,000 x g for 8 minutes.

The supernatant was discarded and the cell pellet was resuspended in 150 µL RTCSR mix:

1x Selection buffer (50 mM Tris-HCl (pH 8.4), 10 mM (NH4)2SO4, 10 mM KCl, 2 mM

MgSO4), 260 µM dNTPs, 530 nM forward and reverse 2’ O-methyl containing primers (de-

tailed in Table A.1). The resuspended cells were placed into a 2 mL tube with a 1mL rubber

syringe plunger and 600 µL of oil mix (73% Tegosoft DEC, 7% AbilWE09 (Evonik), and

20% mineral oil (Sigma-Aldrich)). The emulsion was created by placing the cell and oil mix

on a TissueLyser LT (Qiagen) with a program of 42Hz for 4 minutes. The emulsified cells

were thermal-cycled with the program: 95◦C - 3min, 20x (95◦C-30 sec, 62◦C-30 sec, 68◦C-2
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min). Emulsions were broken by spinning the reaction (10,000x g - 5 min), removing the top

oil phase, adding 150 µL of H2O and 750 µL chloroform, vortexing vigorously, and finally

phase separating in a phase lock tube (5Prime). The aqueous phase was cleaned using a

PCR purification column which results in purified DNA, including PCR products as well as

plasmid DNA. Subamplification with corresponding outnested recovery primers ensures that

only polymerases that reverse transcribed are PCR amplified. Typically this is achieved by

addition of 1/10 the total purified emulsion using Accuprime Pfx (ThermoFisher) in a 20

cycle PCR, however challenging rounds of selection could require increasing the input DNA

or cycle number to achieve desired amplification.

Cloning and purification of polymerase variants. Escherichia coli DH10B and

BL21 (DE3) strains were used for cloning and expression, respectively. Strains were main-

tained on either Superior or 2X YT growth media. Polymerases were cloned into a modified

pET21 vector using NdeI and BamHI sites. Overnight cultures of BL21 (DE3) harboring

each of the variants were grown overnight in Superior broth at 37◦C. Cells were then diluted

1:250, and protein production was induced with 1 mM IPTG during mid-log at 18◦C for 20

hrs. Harvested cells were flash-frozen and lysed by sonication. Polymerases were purified

using a gravity flow Ni-NTA column followed by HiTrap Heparin column (GE) using FPLC.

Purified fractions were pooled and dialyzed into storage buffer (50 mM Tris-HCl, 50 mM

KCl, 0.1 mM EDTA, 1 mM DTT, 0.1% nonidet p40, 0.1% Tween20, and 50% glycerol pH

8.0). Polymerase concentration was determined using a Bradford assay and diluted to a

working stock of 0.2 mg / mL.

Primer Extension Assay. 10 pmol of 5’ fluorescein labeled primer (RT.Probe or

RT.Probe.3ddc) were annealed with 50 pmol of template DNA, RNA, or 2’ O-methyl DNA
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(DNA.TEMP, RNA.TEMP, or Ome.TEMP, respectively) and 0.2 µg of polymerase by heat

denaturation at 80◦C for 1 minute and allowing to cool to room temperature. Reactions were

initiated by the addition of a ”start” mix which contained: 1x Assay Buffer, 2 mM MgSO4

(total) and 200 µM dNTPs. Reactions were incubated for 5 minutes at 68◦C. The labeled

primer was removed from the template strand by heating sample at 75◦C for 5 minutes in 1x

dye (47.5% formamide, 0.01% SDS) and 1 nmol of unlabeled BigBlocker oligonucleotide (to

competitively bind the template strand). Samples were run on a 20% (7 M urea) acrylamide

gel.

PCR Proofreading Assay. 50 µL PCR reactions were set up with a final concen-

tration of 1x Assay Buffer (60 mM Tris-HCl (pH8.4), 25 mM (NH4)2SO4, 10 mM KCl), 200

µM dNTPs, 2 mM MgSO4, 400 nM (DiDeTest.F/DiDeTest.R) forward and reverse primers,

20 ng of template plasmid and 0.2 µg polymerase. Reactions were thermal-cycled using the

following program: 95◦C - 1 min, 25x (95◦C- 30 sec, 55◦C- 30 sec, 68◦C- 2 min 30 sec).

RT-PCR Assay. 50 µL reverse transcription PCR (RT-PCR) reactions were set up

on ice with the following reaction conditions: 1x Assay Buffer, 1 mM MgSO4, 1 M Betaine

(Sigma-Aldrich), 200 µM dNTPs, 400 nM reverse primer PolII.R, 400 nM forward primer

PolII.F2, 40 units RNasin Plus (Promega), 0.2 µg polymerase and 1 µg of Total RNA from

Jurkat cells (Ambion). Reactions were thermal-cycled according to the following parameters:

68◦C - 30 min, 25x (95◦C- 30 sec, 68◦C - 30 sec, 68◦C - 30 s/kb).

Encoding of information into oligonucleotides. We first combined each set of

documents into a tar.xz file and padded the tail end with zeros such that the final file size

was a multiple of 16 bytes. We then used DNA Fountain (Erlich) to generate 4000 oligonu-

cleotides encoding the cover message. We confirmed that none of these 4000 nucleotides had
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a DNA Fountain seed modulo 2000, a fact that will be used below to distinguish the hidden

oligonucleotides from the cover set upon sequencing. For the hidden message, we first gen-

erated 2,000,000 DNA Fountain oligonucleotides, and kept only 2000 out of the 8933 whose

DNA fountain seed was modulo 2000. We then computationally tested each oligonucleotide

set, cover and hidden, to see how many sequences we required to recover each message. For

each set, the oligonucleotides were shuffled into a random order and fed into DNA Fountain

until the message was recovered (DNA Fountain terminates upon successfully recovering the

message). This was repeated 1000 times. We recorded the number of oligonucleotides DNA

Fountain required from each permutation before the message was decoded.

Synthesis of DNA and O’Methyl DNA for DNA Data Storage. The en-

coded oligonucleotide pools were each randomly arrayed on a 12,472 feature chip using the

Customarray rearrayer software to give a ∼3 fold sequence coverage for the standard un-

encrypted DNA pool (4,000 unique oligonucleotides) and ∼6 fold sequence coverage for the

encrypted 2’-O-Methyl-DNA oligonucleotide pool (2,000 unique oligonucleotides). The un-

encrypted DNA oligonucleotides were synthesized on the Customarray B3 oligonucleotide

array synthesizer following standard phosphoramidite chemistry protocols. For the synthesis

of the encrypted, 2’-O-Methyl oligonucleotides, 5 grams of each of the 2’-O-methyl phos-

phoramidites (2’-Ome Bz A, Cat. #27-1842; 2’-Ome Ac C, Cat. #27-1823; 2’-Ome U,

27-1825; 2’-Ome iBu G, Cat. #27-1846) were purchased from Thermo Scientific and re-

suspended in 100mL anhydrous acetonitrile and used for oligonucleotide synthesis on the

chip following standard DNA synthesis protocols. Following the completion of the synthesis,

the oligonucleotide pools were cleaved and deprotected directly from the chip surface using

aqueous ammonia at 65◦C for 4 hours. The cleaved and deprotected oligonucleotide pools
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were resuspended in TE buffer and purified on a Micro Bio-spin column (Biorad) following

the manufacturer’s protocol. The column purified oligonucleotide pools were then used for

further analysis.

Preparation of DNA for NGS Sequencing. Synthesized oligonucleotides were

pooled in a ratio of 1 part DNA to 10 parts O-methyl DNA prior to amplification. To

prepare oligonucleotides for NGS the pools were PCR amplified to add adaptor sequences.

Reactions were indexed using Illumina small RNA primers (RPI1-KOD, RPI2-RTX, RPI3-

RTX-Ome, RPI4-OneTaq One Step RTPCR (NEB)). For KOD, RTX, and RTX-Ome: 50µL

PCR reactions were prepared with 1x Assay buffer, 200 µM dNTPS, 1 M Betaine, 400 nM

RP1 primer, 400 nM RPI (1-3), 10 ng oligonucleotide pool, and 0.2 µg of KOD, RTX, or

RTX-Ome polymerase (polymerase added after temperature reached 94◦C). Reactions were

cycled using a program: 94◦C - 30s; 12x cycles (94◦C - 15s, 65◦C (-1◦C/cycle) - 15s, 68◦C -

10 minutes). For OneTaq One-step RT-PCR kit, the manufacturer’s recommended protocol

was used with the same concentration of pooled oligonucleotides. After thermal cycling,

products were cleaned using Wizard SV PCR purification kit (Promega) and eluted in 15

µL H2O. A secondary PCR was used to further amplify products from the RT-PCR before

submission to the UT GSAF facility. Accuprime PFX PCR (Thermo Scientific) was used to

amplify 5 µL of the eluted primary amplification with universal outnested primers (Universal

F/Universal R) for 25 additional cycles.

Informatic recovery. Starting with raw sequencing reads, we first trimmed adapters

and filtered reads to be between 50bp and 90bp using flexbar. We clustered the resulting

reads using cd-hit at a 70% sequence similarity. For each cluster, we performed multiple

sequence alignment using mafft with a gap penalty of zero and weighted bases according
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to the read’s original length. A consensus sequence is built based on the most common

base and gaps are filled until the sequence reaches our target length. Using knowledge of

the Reed-Solomon code, GC content, and homopolymer constraints, we ensured that the

constructed consensus sequence matched the initial design parameters and if not, iterated

through the gaps until such a sequence was found. Sequences were inputted into a modified

DNA fountain program, where sequences needing less than 20 iterations were fixed and the

remaining shuffled. The aggressive flag in DNA fountain was utilized and run 1000 times,

with the most commonly occurring md5 checksum used as the basis for decoding.

Abbreviations. RT = reverse transcriptase; OMe = 2’-O-methyl.
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Figure A.1: Evolution of a xDNA/polymerase pair creates a platform to secure

DNA information.

Evolution strategy to create RTX-Ome.
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Figure A.2: Structural heat map of mutations that arose during RT-CSR using

2’-O-methyl challenge template.

Conserved mutations are colored incrementally darker red to indicate increased frequency. Mu-

tations found in RTX-Ome polymerase are labeled with KOD polymerase reversions indicated in

orange. The template strand is labeled in blue and primer strand in yellow.
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Figure A.3: Primer extension and proofreading activity of RTX-Ome on DNA,

RNA, and 2’-O-methyl templates.

Primer extension reactions of KOD, RTX, and RTX-Ome polymerases and proofreading deficient

counterparts (exo-) on DNA, RNA, and 2’-O-methyl templates. Extension reactions were performed

with matched 3’ primer:template (left) or a 3’ deoxy mismatch primer (right), which must be cleaved

prior to extension. Gray arrow indicates unextended fluorescently labeled primer and full length

product is marked by a black arrow. In the DNA template uracil is replaced with thymine.
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Figure A.4: Encoding and decoding of information into oligonucleotides.

A. The listed files were encoded into DNA. B. Recovery performance of each tested polymerase

in native DNA oligonucleotides (left) and 2’-O-methyl (right) oligonucleotides. The dotted line

indicates the average number of oligonucleotides needed for decoding based on our simulations.
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RTX-Ome Polymerase Evolution
Round # Mutagenesis RTCSR Primers Total Ome

0 Error Prone PCR

1 N/A RTCSR.Ome5.F / RTCSR.Ome5.R 10

2 N/A RTCSR.Ome5.F / RTCSR.Ome5.R 10

3 N/A RTCSR.Ome10.F / RTCSR.Ome5.R 15

4 N/A RTCSR.Ome10.F / RTCSR.Ome10.R 20

5 N/A RTCSR.Ome10.F / RTCSR.Ome10.R 20

6 N/A RTCSR.Ome20.F / RTCSR.Ome10.R 30

7 N/A RTCSR.Ome20.F / RTCSR.Ome20.R 40

8 Gene Shuffling RTCSR.Ome20.F / RTCSR.Ome20.R 40

9 N/A RTCSR.Ome20.F / RTCSR.Ome20.R 40

10 N/A RTCSR.Ome20.F / RTCSR.Ome20.R 40

11 N/A RTCSR.Ome20.F / RTCSR.Ome51.R 71

12 N/A RTCSR.Ome20.F / RTCSR.Ome51.R 71

13 N/A RTCSR.Ome20.F / RTCSR.Ome51.R 71

14 N/A RTCSR.Ome20.F / RTCSR.Ome51.R 71

15 N/A RTCSR.Ome20.F / RTCSR.Ome51.R 71

16 N/A RTCSR.Ome30.F / RTCSR.Ome51.R 81

17 N/A RTCSR.Ome30.F / RTCSR.Ome51.R 81

18 N/A RTCSR.Ome30.F / RTCSR.Ome51.R 81

Table A.1: Selection conditions for the evolution of a 2’-O-methyl reverse tran-

scriptase using RT-CSR.
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Amino Acid
Position

RTX
Round
18

Variant
Frequency

498 G A 45.00%

251 E K 41.80%

350 G V 41.00%

159 M T 33.60%

381 H R 24.20%

488 I L 22.20%

340 S P 22.10%

384 H Y 21.70%

468 K N 21.60%

40 A V 21.30%

353 V L 20.20%

498 G S 18.30%

289 K R 18.20%

145 L P 17.60%

242 Q R 17.50%

664 K R 17.20%

44 D N 16.50%

244 M F 16.10%

152 F S 15.60%

418 V I 15.30%

Amino Acid
Position

RTX
Round
18

Variant
Frequency

559 K R 15.20%

276 E D 15.20%

741 V A 14.60%

484 R H 14.30%

755 L S 13.80%

168 A T 13.70%

353 V I 13.50%

768 W R 12.30%

214 F L 12.10%

247 R L 11.50%

605 T A 11.10%

704 L I 10.90%

752 K E 10.80%

640 V I 10.80%

684 K R 10.70%

703 V I 10.60%

523 M T 10.50%

248 F L 10.50%

298 A S 10.10%

309 A T 10.00%

Table A.2: NGS sequencing of the OMe RT-CSR Round 18 pool.

Mutations are mapped to the parental RTX polymerase. Only mutations with over 10% frequency

are shown.
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Polymerase
Variant

Mutations (RTX Reference Sequence)
Total

Mutations

RTX-Ome V1 A40V, D44N, Q242R, M244F, E251K, S340P, G350V, V353L, H381R, H384Y,
V418I, K468N, R484H, I488L, G498A, K664R 16

RTX-Ome V2 A40V, D44N, Q242R, M244F, E251K, S340P, G350V, V353L, V418I, K468N,
R484H, I488L, G498A 13

RTX-Ome V3 A40V, Q242R, M244F, E251K, S340P, G350V, V353L, K468N, I488L, G498A 10
RTX-Ome V4 A40V, E251K, S340P, G350V, V353L, K468N, I488L, G498A 8
RTX-Ome V5 A40V, E251K, S340P, G350V, V353L, H381R, H384Y, K468N, I488L, G498A 10

RTX-Ome A40V, E251K, S340P, G350V, V353L, H381R, H384Y, K468N, I488L, G498A,
K664R 11

Table A.3: RTX-Ome variants constructed using NGS data and structure guided

design.
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Figure A.5: Characterization of designed RTX-Ome polymerase variants.

A. Primer extension of designed polymerase variants (V1-V6) on 2’-O-methyl templates. Fluores-

cently labeled primers (OMe Probe F) were extended by 44 nucleotides before reaching the end of

the template strand (OMe Long R). B. Polymerase variants were tested in a single-enzyme RT-

PCR reaction to determine their efficacy for RNA reverse transcription. A 2 kb RNA fragment of

PolR2A from human total RNA was amplified using primers PolII.F2 and PolII.R C. 3’ Dideoxy

mismatch primers (PCRTest.Dide.F /PCRTest.Dide.R) were used in a PCR reaction to determine

proofreading capabilities on a DNA template.
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Figure A.6: DNA Fountain scheme for encoding data files into unmodified and

modified oligonucleotides.

A. The unmodified file is encoded. First, it is padded to a multiple of 16 bytes for compatibility with

DNA Fountain. We then let DNA Fountain generate 4000 oligonucleotides to encode it. We filter

all oligos with a DNA Fountain seed modulo 2000 (by chance, none were found in our particular

run). We then test how many oligos are sufficient to recover the original (padded) file by randomly

shuffling the 4000 oligo file and feeding it into the DNA Fountain decoder. Since the decoder stops

as soon as it recovers the file, we can tally how many oligos out of the 4000 are required. Repeating

this test 1000 times gives statistics that indicate even in cases with loses larger than 1100 out of

4000 it is likely to recover the file. Finally, we perform next-generation sequencing on the 4000

oligos. B. We perform the analogous procedure for the modified file, except we want to encode only

oligos with modulo 2000 DNA Fountain seeds, hence the large number of initial oligos generated.

The remaining steps are identical, except synthesis uses 2’-OMe bases.
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Figure A.7: Distribution of NGS read sizes.

The vast majority of sequences are less than the designed length of 88 bases.
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Figure A.8: NGS read reconstruction workflow.
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Figure A.9: Potential cryptogenetic application for RTX-Ome and other xenopoly-

merases capable of reading information encoded in xNA oligonucleotides.
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