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A central goal of biomolecular engineering is the construction of tools to manipulate
nanoscale processes. DNA has proved to be a programmable material suited for this task.
DNA strand displacement reactions can be designed to process chemical information in the
form of concentrations and sequences. DNA nanotechnology has thus far produced devices
for the detection of disease biomarkers, performed computation on chemical inputs, powered
mechanical action at both the nanoscale and the macroscale, and assembled precise sub-

micron structures from the bottom up.

This dissertation addresses three main topics. First, we develop predictive models for
non-canonical nucleic acid hybridization that enable rational design. Second, we show how
rationally designed DNA strand displacement reactions can be used to perform computations
on information stored in DNA. Third, we present nucleic acid computation with both strand
displacement and transcription and discuss strategies for facilitating the scale up of networks.

Finally, we discuss data storage in nucleic acid variants in the appendix.
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Rational design of DNA circuits and structures is possible because the thermodynam-
ics of DNA and RNA hybridization can be approximated using a nearest-neighbor model.
The parameters of this model are typically experimentally determined through the hyper-
chromism of denatured nucleic acids. This is measured through low-throughput UV-Vis
spectrophotometry melting experiments that require a sizable amount of duplexes for a large
set of sequences. For non-canonical nucleic acids or non-standard interactions, this character-
ization can be prohibitively costly and time consuming. Initially, we considered repurposing
a next-generation sequencing (NGS) platform for high-throughput mapping of nucleic acid
hybridization across a large sequence space; however, we found that the platform is suitable
for mapping protein-nucleic acid interactions but not nucleic acid-nucleic acid hybridization
due to its dynamic range. We then assessed whether high-resolution melting (HRM) can be
used as a rapid method for determining approximate model parameters and found that HRM
models can predict relative stabilities between duplexes of different sequences. Using this
method, we developed a predictive model for phosphorothioate DNA which we then applied

to the design of a phosphorothioate-modified catalytic hairpin assembly circuit.

DNA strand displacement reactions can be used not only to manipulate chemical
information in the form of concentration, but also to read and write to more permanent forms
of information, such as sequence and secondary structure. We developed and demonstrated
a DNA data storage scheme that enables in-memory computation. DNA is a promising data
storage medium for meeting today’s rapidly growing data storage needs; however, because
computation on the stored data is usually performed in silico, strands must be sequenced
and re-synthesized at every read-write cycle. Our scheme circumvents the bottleneck of de

novo oligonucleotide synthesis by updating information using strand displacement cascades
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that result in sequence changes readable by NGS. We experimentally demonstrated two
algorithms - binary counting and cellular automaton Rule 110 - and additionally showed
that biologically-occurring DNA sequences without sequence design can be repurposed for
storage and computation. Our scheme is capable of computation on multiple data in parallel,

as well as random access and sequential computation, allowing for scaled up storage.

Programmable chemical computation is also possible with enzymatic reactions such as
transcription. Catalytic activity from enzymes has the potential to simplify circuit design and
produce biologically potent signals. Practical concerns to expanding chemical computation
circuits such as transcription networks include limited readout of signals and time-consuming
purification. We addressed these concerns by expanding on previous efforts to build scalable
in vitro transcription networks. We updated a single-stranded inhibitory transcription switch
design for compatibility with multiplexed NGS readout and developed an analogous single-

stranded switch that is activated by nucleic acid signals.
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Chapter 1

Introduction

“...The cell should be considered as a logical and computational machine, processing
and managing information. Qur objective should be to identify what logical and compu-
tational modules operate in cells and how they are derived from the underlying molecular,

biochemical and biophysical mechanisms.” - Paul Nurse, The Great Ideas of Biology

Today’s concept of computation very often comes hand-in-hand with electronic, silicon
based computers and digital data. Computation, however, is nothing new to Nature and
perhaps least of all to living things. Organisms survive by communicating and processing
information in the form of chemical signals - in fact, one could even argue that life is sim-
ply information that perpetuates itself. Over the course of evolution, fine-tuned biological
parts have emerged that allow organisms to effectively sense signals, interpret information,
and execute tasks. Rather, it is man-made computing that parallels this architecture with

components that perform data storage, software, and hardware.

The chemical computing observed in living systems, however, is markedly different
from electronic computing. First, there is often no clear distinction between storage, com-

putation, and execution. Epigenetics provide one example - histones, the protein hardware



that contains genomic DNA within eukaryotic cells, also store a layer of “meta” information
in their post-translational modification states that dictates genetic expression. Conversely,
although RNA was first understood as a biological implementation of “random access mem-
ory”, various non-coding RNAs such as miRNA, IncRNA, and siRNA were later found to
post-transcriptionally regulate genetic expression. Second, rather than operating with bi-
nary ON/OFF signals, chemical information usually exists in a continuous range, being less
analogous to digital computers and more similar to analog computers. For instance, mul-
ticellular organisms uses concentration gradients of morphogens to determine a body plan
during development. Third, biochemical computing tasks are usually distributed across the
organism (or a population of organisms). Decentralized processes such as bacterial quorum
sensing regulate various key processes for survival and adaptation - for example, microbial
populations determine whether to initiate biofilm production, sporulate, or become compe-
tent as a function of secreted signaling molecule concentrations, which is often an indicator
of cell density. When engineer biochemical computing systems, the challenge is to achieve

modularity in a medium that is interconnected by nature.

Given the remarkable adaptability and complexity that life is capable of, it is no
surprise that much research in recent decades has sought to understand biochemical pro-
cesses and reprogram them with novel behaviors. Synthetic biology strives to manipulate
organisms, cells, and even minimal in wvitro systems into tools. Both the complexity and
specialization of biology challenge this goal, however. If we want to better understand how
to design synthetic life by distilling the design principles of biochemical networks, we need a
“programmable” chemistry. DNA has proved itself suitable for this role as a building block

of synthetic biochemical networks and applications beyond.



In this thesis, we look specifically at how chemical information can be encoded and
processed with nucleic acid-based systems. We begin with what makes DNA suitable for ra-
tional design and later focus on the implementations of data storage, software, and hardware

in DNA nanotechnology.

1.1 DNA as a physical building block

DNA exhibits well-studied and highly predictable chemical behaviors, and its pro-
duction and usage have improved rapidly in recent decades, making it not only a useful
handle for manipulating biological systems but also a customizable molecule for applica-
tions beyond molecular biology. DNA strands hybridize by Watson-Crick base pairing rules
and accordingly fold into thermodynamically stable secondary structures. The stability of
a double-stranded DNA duplex can be precisely calculated using nearest-neighbor models,
which assume that the primary contribution to duplex thermodynamics comes from base
stacking interactions between adjacent nucleobases. Therefore, thermodynamic properties
for any duplex may be predicted using the combined contributions of all nearest-neighbors
contained in the duplex [48, 41] (Fig. [L.I]A). Duplex stability correlates positively with con-
centrations of monovalent cations (e.g. sodium, potassium) and is also a function of the
concentration of other ions (magnesium) or reagents (ANTPs) present in the solution [14T].
This allows the stability of a DNA duplex at any temperature to be estimated simply by its

sequence and relevant buffer parameters.

The parameters of the nearest-neighbor model for DNA duplex stability were deter-

mined by various groups from the 1980s to the early 2000s using UV-Vis spectrophotometry



[76], [46], (50, 162, 183, 161], which directly measures the double-stranded to single-stranded
transition during duplex melting by leveraging the innate hyperchromicity (i.e. increased
UV absorbance in single-stranded form) of DNA. The melting curve that results may be ana-
lyzed to extract properties such as free energy, enthalpy, and entropy of formation (Fig|1.1B,
[148, [132], 151]). The nearest-neighbor model can also be applied beyond perfectly comple-
mentary hybridization between DNA strands - parameters have been derived for DNA struc-
tural motifs [164], RNA [62] [195], DNA-RNA hybrids [184], and some non-canonical nucleic
acids, such as variants with unnatural backbones (e.g. linked nucleic acids, 2’-o-methylation)
[144], [107] or synthetic nucleobases [91]. Available softwares apply these parameters to pre-
dict the stability of two complementary strands or even the expected secondary structures
of a set of strands [87, 229] [160]. These models also make it possible to analyze properties
of nucleic acid duplexes that are crucial for molecular biology applications [142] or to de-
sign multi-stranded DNA-based systems that are programmed to switch between multiple

conformations based on their input or environmental conditions [218].

While predictive parameters drive the rational design of nucleic acid-based systems,
similar parameters have not yet been determined for most nucleic acid analogues, many
of which contain chemical modifications (e.g. phosphorothioates, mesyl phosphoramidate,
2’-fluoro modifications) that are useful in diagnostics or therapeutics. This is in part due
to the high material requirements and costs of UV-Vis melting experiments, which are low-
throughput and necessitate materials on the order of nanomoles. In Chapters [2 and |3 we
explore alternative experimental approaches to deriving sequence-based predictive models

and consider their limitations and tradeoffs.

DNA is highly accessible as a commercial product. Oligonucleotides with custom



sequences can be rapidly and cheaply produced at scale - at time of writing, a 30 nucleotide
(nt) oligonucleotide costs ~10 USD for 25 nmoles and typically ships in 1 business day from
the largest suppliers. Phosphoramidite chemistry on solid-phase synthesis is the dominant
synthesis method currently in use, despite some limitations with yield and quality at longer
lengths as a result of failed coupling [93]. Larger custom sequences on the order of hun-
dreds to thousand bases can be pieced together from chemically synthesized fragments and
biologically amplified as double-stranded duplexes. Alternatively, high-quality, kilobase-long
single-stranded DNA, albeit with native sequences, can be extracted from sources such as
bacteriophages; methods have been reported to produce long strands with custom sequences
by cloning [53]. A plethora of modification chemistries are available for functionalizing DNA,
including adding fluorescent signals (fluorophore conjugation), increasing resistance to degra-
dation caused by nuclease enzymes (backbone modifications such as phosphorothioation or
2’-O-methylation), and attaching labels for later covalent (e.g. O6-benzylguanine aka SNAP-
tag) or noncovalent (e.g. biotin) linking to other biomolecules such as proteins, antibodies,

dyes, or even another oligonucleotide.

Rapid advances in sequencing in recent decades through the development of high-
throughput next-generation sequencing platforms [126] have dramatically improved our ca-
pacity to work with DNA in many areas ranging from clinical contexts to biotechnology
to fundamental research by combining chemical, electrochemical, optical, and enzymatic
advances. Among the most popular technologies are Illumina sequencing-by-synthesis plat-
forms, such as the Illumina MiSeq, which enable massively parallel sequence readout on
the order of tens of millions of individual sequences for sequences up to several hundreds

of base pairs in length [14]. While these platforms are predominantly used to analyze se-



quence information (as in genome science) or to detect the presence of sequences impli-
cated in disease states (as in diagnostics), the DNA microarray-like parallel presentation of
covalently-attached, heterogeneous sequences may be additionally useful in probing biomolec-
ular interactions involving DNA. In Chapter [2, we explore the possibilities and limitations
of repurposing parallel sequencing platforms for high-throughput analysis of DNA-based
interactions. As the technology to read longer sequences matures, platforms for portable
sequencing in low-resource conditions [128], low-cost rapid sequencing in real-time [158], and
single-molecule sequencing [53] have also emerged. Together, these factors accelerate the use

of DNA in applications beyond molecular biology.

1.2 DNA as data storage

Given that DNA evolved as a biological information storage medium, it is not sur-
prising that it is currently being considered for the storage of man-made information. The
volume of data consumption is increasing exponentially and has exceeded expectations in
the last two years, possibly from higher demand due to the 2020 pandemic - 181 zettabytes
of data are projected to be produced in 2025 alone [5]. With this explosive growth comes
an urgent need for space-efficient, stable, and cost-effective means of archiving data. The
capacity for electronic data storage, while also growing steadily in recent years, is dwarfed
by data consumption - in 2020, the worldwide data storage capacity reached 6.7 zettabytes,

little more than 10% of the total data produced that year, which is 64.2 zettabytes.

DNA’s 4-letter nucleotide alphabet translates to a theoretical maximum information

density of 455 exabytes/gram [39] in which each nucleotide position encodes 2 bits, with



recent experimental results demonstrating encoding and recovery of 215 petabytes per gram
[59]. The successful extraction of sequencing-viable DNA from fossilized remains suggests
that, under the right conditions, a specific DNA sample could be preserved for centuries
to millennia [IT], 130]. Moreover, genetic information is perpetuated in living cells through
both replicative and error-correcting molecular mechanisms. Synthetic oligonucleotides are
stable for years when lyophilized or dissolved in appropriate buffers and stored in a freezer
[3], and double-stranded DNA can be kept at -20°C for years without significant loss. Stable
room-temperature storage is achievable with encapsulation within a matrix to protect from
heat, radiation, humidity, enzyme contaminants, and other factors [77]. Minuscule amounts
of DNA down to just several copies are theoretically amplifiable with PCR. In contrast, the
typical external hard drive has a lifespan of 5 years and costs 100 USD to replace in 2022. US
data centers consumed nearly 70 billion kilowatt hours of electricity and over 600 billion liters
of water in 2014. Flash memory has a theoretical maximum density of 70 GB/g; magnetic
tape storage, while less consuming of resources and cheaper to produce, has a significantly
lower data density capacity than DNA at a current maximum of 201 GB/in? as of 2017 [2].
Thus, over the past two decades DNA storage has become an increasingly appealing form of

alternative data storage to meet the demands of the digital world.

Modern in vitro DNA storage schemes typically operate on a read-write cycle that
involves encoding, synthesis, sequencing, and decoding. In this form of DNA storage, the
DNA is more akin to hard drives than random access memory, because computation does
not occur “in memory”. Accessing any specific piece of information (“random access”) can
be achieved by PCR with primers that target the information of interest [138], 187, 210, [17].

Like other data storage media, DNA must be robust to data corruption. Assuming that en-



coding and decoding steps can be done perfectly in silico, these errors can accumulate in the
synthesis (abasic sites, truncation, deletions), storage (temperature fluctuations, radiation
damage, nuclease contamination), and sequencing (missing fluorophore, polymerase misin-
corporation) steps. Simple redundancy can resolve information loss by reconstructing lost
data using a consensus; however, this strategy significantly reduces the desirable high data
density promised by DNA storage and does not necessarily protect data from corruption. For
this reason, error-resistant encoding and decoding schemes are critical to overcoming error
accumulation. An early scheme demonstrated by Goldman et al. in 2013 encoded data in
overlapping segments at four-fold redundancy to protect against missing oligos [74]. Bornholt
et al. later built on this idea by applying a logical XOR to reduce redundancy to 1.5-fold
[17]. Some schemes have borrowed from coding theory to apply existing error-correcting
codes with great success. Works by Grass et al. and Blawatt et al. have incorporated Reed-
Solomon codes to protect against dropout of oligos [77, 16]. Ehrlich and Zielinski’s DNA
Fountain scheme in 2017 adapted fountain codes for DNA data encoding and enabled both
detection and correction of error that was tolerant of missing oligonucleotides, allowing full

recovery at very low redundancy.

The cost and accessibility of sequencing and synthesis are the key bottlenecks to
adapting DNA data storage for widespread use. Sequencing has seen many advances in recent
years thanks to the development of novel high-throughput platforms. On the other hand, the
cost of synthesis is decreasing much more slowly than for sequencing, and fundamental lim-
itations prevent the large-scale production of long (>100 nts), high-quality oligonucleotides.
One solution may involve enzymatic de novo oligonucleotide synthesis [146]. Although the

incorporation of a determinate number of nucleotides (as opposed to homomer runs) remains



a challenge, Church and colleagues have demonstrated a scheme that can nevertheless utilize
enzymatic synthesis by encoding information in transitions between homomer regions [117].
Another solution would be to repurpose biologically occurring DNA by storing information
in the topology rather than the base sequence of duplexes. Tabatabaei et al. have devel-
oped a write system that involves the programmable restriction enzyme Pyrococcus furiosus
Argonaute to store information by nicking specified positions in E. coli genomic DNA [186].
Although these schemes in theory have a lower data density by not encoding directly with
the sequence (experimentally achieved 4 EB/g in Tabatabaei et al., theoretical maximum of
90 EB/g Lee et al.), they are no longer limited by strand length, less prone to data loss, and

can in practice more efficiently use adaptor or metadata sequences.

Directly editing the encoded information could allow costly and time-consuming cycles
to be skipped by reusing existing strands. Another work by Milenkovic and colleagues
uses PCR-based methods to access and edit data in vitro [I87]. This work used a prefix-
synchronized code to store words in a lookup dictionary for efficient storage. While the
schemes presented in this work circumvent de novo synthesis of an updated sequence, they
require shorter fragments to be synthesized as primers containing new information. Recently,
Wang et al. have proposed an in-memory computation scheme based on single instruction,
multiple data operation using DNA strand displacement (SIMD||DNA) in which the encoded
data is a direct function of the computational output [200]. This requires no intermediate
synthesis steps, as information is encoded in the position of nicks in predetermined regions
corresponding to bit values. In Chapter ff we demonstrate the scalability of SIMD|DNA
by coupling computational outputs to sequencing readout by NGS. We additionally reduce

the need for long oligonucleotide synthesis by repurposing naturally-occurring M13 DNA for



data storage.

Complementary to the maturation of DNA storage is the development of algorithms,
chemistries, or proteins that make it possible to store and retrieve information in polymers
other than DNA. At present, phosphodiester DNA is the primary medium in which data
storage has been implemented. RNA is a significantly less stable medium considering its
2’ hydroxyl group allows self-hydrolysis to occur spontaneously, and RNA nucleases are far
more ubiquitous in the environment than DNA nucleases. Encoding information in chemi-
cally modified nucleic acids either as a means of protection against nuclease contamination or
to build parallel channels of information is possible if the necessary protein tools are avail-
able. In Appendix [A] we demonstrate how directed evolution methods can facilitate this
goal by expanding the space of viable storage media to non-canonical nucleic acids through
the development of novel polymerases. Additionally, we update the DNA Fountain coding
scheme [59] to accommodate 2’-o-methyl-modified oligonucleotides, the chemical synthesis

of which is more prone to deletion errors.

1.3 DNA as software

The programming language of biochemical networks is implemented with concentra-
tions and chemical kinetics. Just as models of duplex stability allow the specification of
precise binding through sequence, experimental data on the DNA hybridization kinetics en-
ables the prescription of desirable hybridization behaviors by tuning reaction rates. DNA
kinetics can be accurately and sensitively measured using fluorescence [135]. Association

constants of 10° to 10" M~! s~! have been reported for two complementary strands from 10
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to 30 nts long hybridizing at room temperature under high cation conditions [135, [65] 225].
A bimolecular association constant of 10° M~! s~! approximately translates to a time-to-
half completion of about 30 seconds [I75]. Dissociation varies dramatically with length; for
example, the half-life of dissociation can range from minutes to centuries for a 10-base pair
duplex to a 20-base pair duplex [135]. The possibility of making G-C bonds or sequence
repeats increase the chances of forming a stable initial bond that may then zipper or adjust
into the hybridized form [139]. More recently, a weighted neighbor voting algorithm that

predicts the rate constant of hybridization for a given sequence to within a factor of 3 with

91% accuracy has been developed [226].

Given this understanding, length and sequence composition can translate to tunable
parameters with which to design hybridization reactions with custom kinetics. DNA strand
displacement (DSD) is a reaction in which a hybridized (target) strand in a duplex changes
its strand partner. This is energetically favorable when the exchange results in the overall
maintenance or increase of the total number of bases paired (Figure[L.2)). For such a reaction
to occur, the new partner strand must make an initial contact with an unbound base pair
on the target strand. Because the duplex is highly stable and fraying occurs slowly (Fig-
ure ), DSD may be accelerated by a toehold - a single-stranded region on the hybridized
strand. Upon binding to the toehold, the new partner strand subsequently competes with
the incumbent partner in a random walk process called branch migration. When the new
partner fully exchanges all base pairing contacts with the incumbent partner, the incumbent
partner is either completely unbound and dissociated (toehold-mediated strand displace-
ment; Figure ) or remains bound to a toehold on the target that is not complementary

to the new partner (toehold exchange; Figure ) In toehold exchange reactions, because
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toeholds are usually only 2 to 6 nucleotides long, the incumbent strand may spontaneously
dissociate after a short period of time, leaving behind a free toehold that may initiate further
DSD reactions. The effective rate of toehold-mediated strand displacement is affected by
the toehold binding strength (which is a function of sequence and length) and varies from
10 M-1s-1 to 107 M-1s-1 for toeholds 1 to 7 nucleotides in length [225]. Toehold exchange
reaction rates depend on the lengths of the toeholds. When the first toehold is longer than
the second, the first toehold length determines the rate (since part of the second toehold is
indistinguishable from the branch migration); when the second toehold is longer, the reac-
tion rate varies with the difference in length between the toeholds [225]. Additional control
over reaction rates are possible through variations of toehold exchange such as remote toe-
holds, which can be used to initiate strand invasion, branch migration, and displacement at
regions non-adjacent to the toehold (Figure [1.2D) [68]. Likewise, strand displacement rates
can be controlled in RNA; computational simulation studies on RNA show that the rates of
toehold-mediated strand displacement in RNA range from 1 M~*s™! to 10¢ M~! s7! (similar
to DNA), with toeholds on the 5’ end resulting in a much faster rate than the same toehold

sequence on the 3" end [185].

This precise control over the rates of hybridization-based reactions makes it possible
to engineer systems of chemical reactions that are driven by chemical equilibrium to exhibit
defined behaviors. At an abstract level, any chemical reaction can be simplified to a set
of reactant and product species and their corresponding stoichiometries. A system of such
reactions can be represented as a chemical reaction network (CRN). To compute with CRNs,
information is encoded as the concentration of a species, and reactions that involve the species

act as the algorithm. In this manner, CRNs can be devised to carry out various functions
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on chemical inputs [176, BI]. Examples of such functions include linear functions such as
addition (Figure[L.3]A) and nonlinear functions such as the maximum function (Figure[L.3B).
DSD programming languages have been developed to translate CRNs to experimental DNA
implementations [176, 24, B1]. In DSD implementations, a species is defined as the combina-
tion of a strand and its bound state - for instance, a target species that exists mostly in the
bound state at the beginning of the computation may become increasingly unbound over the
course of the computation, and the concentration of the unbound target strand is defined
as the output signal. This convention is due to the fact that many DSD systems seek to
be enzyme-free to maximize programmability, which comes at the cost of forgoing de novo
synthesis or degradation of strands within the system. Such DSD systems are constructed
at a far-from-equilibrium state so that equilibrium will drive forward the computation, like
a compressed spring. A system will therefore have the same overall concentration of a par-
ticular DNA strand at the beginning and the end of the computation. To accelerate the
forward reaction, many DNA-only systems use a high concentration of “fuel” molecules that
are consumed (i.e. reached their energetically favored state) to amplify the signal, driving
computation in the process. The output of a computation is generally coupled to fluorescence
signaling through a molecular beacon - a double-stranded or hairpin structure with a single
pair of covalently conjugated fluorophore and quencher molecules that become physically
separated upon binding to the target strand. The fluorescence signal is monitored over the

course of the computation as an indication of the output at any given time.

Various circuits have been experimentally implemented with DSD reaction motifs to
perform computational tasks from digital logic to spatial pattern formation. The seesaw

gate (Fig|1.3(C) is a motif by Qian and Winfree that generalizes toehold exchange reactions
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[152]. Input strands contain two longer regions, or domains, surrounding a central toehold.
Seesaw gates are complexes with a top strand (similar in structure to an input strand) that is
partially hybridized to a bottom strand. Seesaw gates each include two toeholds. Inputs are
identified by the sequences of their domains - only if an input strand contains a complemen-
tary domain to a gate will toehold exchange occur and displace the top strand (output of the
gate), which may act as input downstream. Boolean logic circuits that implement bitwise
mathematical operations [152] and neural network pattern recognition circuits [153} [34] have
been constructed using cascading layers of seesaw gates. Qian and colleagues trained neu-
ral networks in silico to determine appropriate weights to achieve memory for several 4-bit
patterns that were then encoded in the concentrations of gate complexes. However, negative
weights are required in neural networks to calculate the weighted summation of all inputs but
cannot be represented as a negative concentration. As a workaround, Qian and colleagues
have in one instance used dual-rail representations that separately encode “positive” and
“negative” concentrations both as positive concentrations [153] and in another used winner-
take-all motifs based on pairwise annihilation [34]. The output of DSD computations may
also be dynamic and generate patterns over time or location, impressively without the use
of enzymes. The “rock-paper-scissor” oscillator is a CRN containing three species that in-
terconvert to produce waves with defined periods. Using only DNA hybridization reactions,
Srinivas et al. compiled this CRN into a DSD system and demonstrated in vitro oscillatory
behavior, with each target species completing more than 2 cycles over the course of 50 hours
[T7§]. Chirieleison et al. constructed a DSD circuit that performs edge detection on the area
of UV light exposure and to produce a fluorescent pattern [35]. The circuit uses photola-

bile linkers that become cleaved upon UV irradiation to release upstream signaling strands
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while also inhibiting activation of downstream signals. This enacts an incoherent feedfor-
ward loop, which produces a pulse of signal over time. Released signals are amplified in a
process called catalytic hairpin assembly [119], in which signal strands catalyze hybridization
between kinetically trapped hairpin strands. The signal is amplified and transduced into a
downstream signal in the form of a single-stranded domain, which in turn interacts with
fluorescent reporter complexes. Because the system is spatially distributed across a heavily
cross-linked media that slows diffusion, signals accumulate to form a signal gradient along the
edge of the irradiated area. DSD systems that can generate lasting, complex patterns that
are discrete [166] or continuous [165] have also been proposed. The assembly of large DNA
structures can be conditionally initiated through the output of DSD circuits. Similar to cat-
alytic hairpin assembly, the hybridization chain reaction uses a single-stranded DNA strand
to catalyze enzyme-free hybridization between metastable hairpins [49]. This technique has
applications in in situ hybridization, where the unbounded multi-stranded assemblies can
serve as fluorescent detectors with signals orders of magnitude brighter than one-to-one in
situ probes [36] [37]. Schulman and colleagues have adapted hybridization chain reaction for
finite assembly to drive the controlled expansion of hydrogels to produce mechanical motion
[23], as well as a “locked” design that becomes activated upon strand displacement by an
upstream DNA signal [61]. This diversity of behaviors that may be achieved using DNA

alone is a testament to the success of nucleic acid rational design strategies.

Despite its versatility, however, DNA is ultimately not as chemically reactive as en-
zymes. Enzyme components can not only more efficiently drive DNA circuits towards com-
pletion but can actuate biologically potent responses to molecular input. To balance the

tradeoff between efficiency and programmability, recent works have included proteins from
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routine molecular biology application as standard parts of in wvitro chemical circuits, with
strand displacement reactions as the customizable components. This has achieved the goal
of recapitulating complex biochemical dynamics with minimal, rationally designed systems.
For example, the Polymerase/Exonuclease/Nickase (PEN) system developed by Rondelez
and colleagues consists of a DNA template, a DNA primer, Bst DNA polymerase, nickases,
and exonuclease that operates by enzymatically synthesizing new strands and degrading ex-
isting strands [9]. Complex far-from-equilibrium behaviors have been shown using the PEN
system, including oscillations [84], stable chemical spatial gradients [220], and traveling waves

[145, 221, 219).

T7 RNA polymerase (T7 RNAP) is another commonly used enzyme tool for in vitro
computation. T7 RNAP is readily used in vitro because it requires a single subunit, and is
both highly specific to its promoter (reducible to a minimal double-stranded 17-nt sequence)
and highly active [28] [I80]. Using T7 RNAP transcription as a means of producing circuit
parts, Schaffter and Strychalski developed an RNA version of the seesaw gate by Qian and
Winfree for boolean logic operation [168]. These transcribed RNA gates have a practical
advantage over DNA complex gates in that the RNA gate transcripts contain a self-cleaving
ribozyme, ensuring one-to-one assembly in vitro without additional purification steps. Fur-
thermore, the state of transcriptional activity itself can be the output of computation. Kim
et al. introduced the T7 transcription gate in 2004, a circuit element that conditionally tran-
scribes RNA strands based on the hybridization state of the T7 promoter (Figure [1.4A). As
transcription is dependent on the presence of a double-stranded promoter region, gates are
switched ON upon binding of a DNA signal strand complementary to the promoter sequence.

RNA transcripts can act as inhibitors of input for downstream gates by toehold displace-
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ment of the promoter top strand, or indirectly as activators by binding complements of DNA
signal strands and thereby freeing the signal to interact downstream. RNase H is included in
these transcriptional circuits, which cleaves RNA strands bound to DNA as in the case of the
inhibited signal, allowing the system to produce dynamic outputs. Kim and Winfree have
since proposed transcriptional circuit designs for logic circuits and neural networks [108] and
experimentally demonstrated oscillatory, bistable, and pulse behavior using transcription
[110, 1111 204) 109]. Schaffter and Schulman have expanded on this design of the transcrip-
tion gate with additional motifs for state induction and signaling to scale up circuits, and
have demonstrated circuits with feed-forward architecture and switchable states that contain
up to four transcription gates and induction nodes [I167]. Kar and Ellington have sought a
more scalable conditional transcription gate design by developing a single-stranded hairpin
transcription gate (Figure [1.4B) [104]. This hairpin circuit element can act as an inhibitor
for one or two input strands, performing boolean NOT and NAND operations. Rationally
designed transcription factors by Chou and Shih present another method to switch between
active and inactive transcription that uses a DNA tether covalently attached to a T7 RNAP
as a component of DNA-based transcription factors [38]. Upon strand displacement that
results in the tether binding to a template strand - which contains complementary single-
stranded domains to the tether, a double-stranded T7 promoter, and a double-stranded gene

- transcription of the gene is activated.

Finally, DSD circuits can actuate phenotypic change by interfacing with enzymes in
vivo. Several generations of riboswitches - RNA transcripts that are conditionally translated
by the secondary structure of the ribosome binding site (RBS) - have been in development

in the past two decades. Starting with Isaacs et al. in 2004, riboregulator designs initially
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involved sequestering the ribosome binding site by direct hybridization with an upstream
portion of the transcript. Later, Green et al. have presented designs with fewer sequence
constraints that prohibit ribosome binding by secluding the RBS within a hairpin that be-
comes unfolded and available for translation upon binding of a linear trigger RNA strand
[81]. This design has since been expanded to accommodate up to 4 inputs for logic com-
putation [80], in addition to a repressor switch design that prohibits ribosome binding with
a highly stable RNA three-way-junction [112]. These designs also yielded a fair number of
mutually orthogonal sets (18 activators and 15 repressors) that may be used within the same
system without significant crosstalk. In parallel, Chappell et al. have presented components
using transcription attenuators to form upstream terminator and anti-terminator sequences

to regulate transcription [29].

Nucleic acid circuits with and without enzymatic components have been successfully
applied to molecular detection. Isothermal amplification techniques such as catalytic hair-
pin assembly, loop-mediated isothermal amplification [136], rolling circle amplification [47],
and strand displacement amplification [198], are well-suited as a single-component circuit for
point-of-care diagnostics because their isothermal operation does not require special equip-
ment such as PCR machines [71]. These techniques have been used in a variety of assays,
including detection of pathogens (e.g. HCV, chlamydia) [82] [I§] and gene analysis (e.g.
SNP detection) [47]. Detection of single disease analytes is usually computationally simple,
involving activation or inhibition conditional on the presence of the target molecule. More
complex circuits, like molecular classifiers, can be used to make more diagnoses based on
multiple disease markers. For instance, Lopez et al. developed multi-gene classifiers to dis-

tinguish healthy plasma from cancer plasma or bacterial infections from viral infections by
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detecting concentrations of seven RNA transcripts of interest, achieving correct classification
on all 12 patient samples tested in vitro [127]. Since then, Zhang et al. have implemented
a four-gene classifier that takes miRNA profiles from serum samples of healthy and lung
cancer patients as input [223]. This circuit achieved an accuracy of 86.4% in distinguishing

between healthy and diseased states in a total of 22 samples.

Several challenges to DNA computation bottleneck its progress. First, scaling up
rationally designed circuits is often challenging. Most commonly used gate components are
multi-stranded complexes and therefore must be stoichiometrically and correctly annealed
prior to use to prevent free strands from interfering with downstream signals. For this rea-
son, complexes generally require gel purification to remove unbound strands. As the size
of the circuit increases, this time-consuming operation becomes less and less feasible. At
present, the largest DNA-only circuit contains around a hundred gates [34] which, while
impressive, is still far from the complexity of natural biochemical systems. Nucleic acid
circuits involving transcription have presented some solutions to this issue; for instance, the
single-stranded transcription switch design by Kar and Ellington [104] and the self-cleaving
seesaw gates by Schaffter and Strychalski [I68] ensure a one-to-one ratio between the top
and bottom sequences. Second, because signals are generally represented as concentrations
of specific molecules, it can be difficult to read multiple results in parallel within one sam-
ple. Signals are read out using fluorescence, meaning multiplexed signal readout requires
distinct, conjugable fluorophores with non-overlapping emission spectra. It may therefore
be helpful to couple signals to high-throughput quantification such as qPCR, NGS, or other
methods that are equipped to analyze mixed populations. For instance, assays in which

computational output is designed to produce a change in sequence (or possibly even use
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sequence as an additional layer of instruction through mismatches, partial complementar-
ity, etc.) could take advantage of high-throughput sequencing technologies. Third, while
in theory even short sequence domains promise orthogonality because of the large space of
possible sequences, similarities between domains could cause cross-talk and leak in reality
and need to be addressed empirically. Strategies for reducing unwanted leak in DSD systems
have been presented [202]. Addressing leak in a system is a slow troubleshooting process
that could potentially also benefit from multiplexed sequencing readout which captures a

snapshot of all output and intermediate signals at once for more transparent debugging.

In Chapter[4] we present a DSD scheme that results in a change of sequence, making it
compatible with next-generation sequencing and therefore scalable. In Chapter 5, we show
that next-generation sequencing and qPCR may also be used as a means of quantifying

concentration at a scale.

1.4 DNA as hardware

The programmability of DNA not only makes it suitable as a medium for biochemical
software, but also a choice substrate for prescribing exact structures at the nanometer scale.
In doing so, DNA structural assemblies have filled a gap in the demand for customizable
nanotechnology by taking a bottom-up approach. Although we will not cover any work by
the author in this area in a later chapter, we will nevertheless address some of the notable
works and key directions in this field given its rapid growth and relevance to the fields of

DNA data storage and DNA computation.

DNA nanostructures are composed of repeating structural motifs. Holliday junctions
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are a type of stable immobile multi-stranded DNA structure that may be used as a tile for
2D assemblies, or connected in 3D to produce wireframe structures [I71]. Another common
style of DNA structure is the origami tile, which folds a long, single-stranded DNA scaffold
using shorter oligonucleotide staples to produce filled tiles [159]. Freeform structures can
also be made using the scaffold and staple method [99]. The scaffold DNA, which is usually
kilobases long and necessarily single-stranded, is sourced from bacteriophages that produce
circular, ssDNA genomes [26]; because the native sequence is unaltered, the shorter oligonu-
cleotide staples are designed to complement sequences in different regions and bring them
together physically. If an artificial sequence is desired, it can be produced enzymatically
and at the correct stoichiometry either by in vitro amplification techniques such as rolling-
circle amplification or by replication in vivo with bacteriophage [53]. DNA nanostructures
have been produced and assembled in vivo by genetically encoding components strands and
reverse transcribing selected transcripts to produce the ssDNA components [56]. RNA has
additionally been explored as a material for assembling nanostructures. Both standalone
structures and repeating meshes (up to 100 nm without deformities) have been produced

cotranscriptionally [67, [83] 123], and structures can even be assembled in vivo [120].

To produce more modular components that depend on local interactions for assem-
bly rather than “seeding” interactions, designs using only short DNA oligonucleotides have
emerged [212] T06]. These assemblies use fairly short (32 to 64 nts) oligonucleotides that
hybridize across multiple strands to produce a web of connections between strands in a man-
ner reminiscent of LEGO blocks. Recently, crisscross polymerization has been demonstrated
as a rapid, highly multi-stranded assembly mechanism for building large 2D slat structures

[134], with the latest designs reaching multiple microns in dimension [205]. Structures may
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be periodically assembled with repeating strands to produce larger structures of unbounded
dimensions, or aperiodically assembled using unique strands, the latter case trading off as-

sembly size for the ability to uniquely address specific locations.

This bottom-up control over submicron geometry has broad applications across dis-
ciplines from therapeutics to optics. Targeted delivery of drugs in vivo has been widely
pursued. Molecular payloads contained within DNA origami structures may be delivered
to specific regions of the body by passive targeting (accumulation in target regions) [227],
and the structures containing these drugs may be programmed for conditional release in the
presence of protein biomarkers [6]. DNA and RNA nanostructures can also act as scaffolds
for other biomolecules such as proteins and small molecules [66]. In certain disease states,
the geometry between drug molecules can have a large impact on treatment efficiency; DNA
structures can scaffold the precise positions and stoichiometries of drug molecules to more
effectively deliver these drugs [222]. DNA origami scaffolds can serve as templates for or-
ganic synthesis for higher yield and improved chemoselectivity [I96]. Functional structures
such as synthetic lipid membrane channels have been constructed [116]. Nanofabrication
applications have also utilized the precise control afforded by nucleic acid hybridization; the
production of nanoscale metallic devices with programmable plasmonic properties can be
achieved with the help of origami scaffolds 75, [170]. DNA nanostructures have also been
used as tools to investigate biophysical [64) [63] or compositional [I74] properties of proteins,
and as tools for gene detection similar to microarrays [105, [I81]. This space of applications
can be further expanded with various conjugation techniques that enable the construction
of functionalized, robust nanostructures [209]; for instance, Structures can be chemically

coated to be made significantly more nuclease resistant for in vivo use [7].
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DNA-based systems have also explored several methods for creating mechanical mo-
tion through the binding and unbinding of sequence domains. A well-studied example is the
DNA walker, which is a nanoscale machine that makes directional progress (walk) on DNA
duplexes (track) by alternatingly hybridizing its single-stranded overhangs (feet) with free
overhangs from the tracks (footholds). Initial designs were inspired by the “walking” mo-
tion of kinesin and dynein along microtubule filaments. In 2004, Shin and Pierce developed
a double-stranded DNA walker whose walking directional movement along a duplex track
could be controlled by adding specific strands [I72]. These strands can attach one foot of
the walker to any foothold within reach, or release a bound foot by displacing a previous
attachment strand. An autonomous design was developed around the same time by Yin et
al. in which a DNA walker travels between posts by hybridization, followed by ligation and

restriction digest to produce motion using a “scorched earth” strategy [213].

The main areas of improvement for dynamic DNA structures are processivity, speed,
and directional control. Jung et al. showed that the addition of a simple 8-nt “cleat” -
an extension of the toehold region - to a DNA walker resulted in up to 47 steps while
remaining bound for 12 hours [I01], significantly improving processivity (albeit trading off
speed) compared to a previous cleat-less design at 36 steps in 40 minutes [100]. Going
beyond the idea of a two-legged walker, Yehl et al. produced high-speed DNA-based rollers
by coating spherical particles with DNA “feet” and sped up release from footholds using
irreversible RNase H digestion, achieving speeds on the order of about 80 nm/s [211]; for
comparison, this is 10% of the in vitro speed of conventional kinesins at 800 nm/s [92].
Impressively, electrical fields can be used to rotate a DNA robotic arm within milliseconds

[114]. Other modes of top-down control have driven mechanical action at the nanoscale,
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including light (hybridization/dissociation using azobenzene and its derivatives; [216]) and

pH (structural change based in the i-motif; [55]).

As is the case in molecular biology where the lines between software and hardware
are blurred, so it is in DNA nanotechnology where the nucleic acid components that process
signals often also actuate responses. Beyond walking motion, dynamic DNA structures
have accomplished other tasks at the molecular scale. Simmel and colleagues have used the
aforementioned electric field-controlled DNA robot arm to modulate fluorescent signals in a
computer-directed manner by moving a gold nanorod into and out of range of fluorophores
immobilized on DNA origami [I14]. Qian and colleagues demonstrated autonomous cargo
sorting with a DNA walker that traveled via random walk along a DNA origami track, picking
up oligonucleotide-labeled cargo and dropping them off at their corresponding goal locations
[192]. DNA walkers have also found application in controllable plasmonic nanostructures.
Zhou et al. have produced a large (35 x 10 nm) gold nanorod walker and “stator” pair that
emits polarized light with distinct circular dichroic spectra as a result of coupling between
the nanorods [228]. The relative position of the walker to the stator is mediated by strand
displacement through the addition of strands. The precise, sequential gait of DNA walkers
can provide a valuable method of control for multi-step organic synthesis. He and Liu have
gone beyond DNA-templated organic synthesis strategies [121] and achieved a series of amine
acylation reactions to form oligoamides with prescribed sequence through the motion of a

DNA walker [86].

DNA origami seeks to bridge top-down fabrication techniques with bottom-up self-
directed assembly by creating programmable and functional nanoscale tools. Among the

challenges that DNA origami faces today include low yield, unstable larger-scale (i.e. beyond
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micron) assemblies, lack of detailed analytical models of folding, high costs from synthesis
of hundreds to thousands of custom oligonucleotides, and incompatibility with experimental
conditions found in some applications. Attaining the promise of nanoscale control in a wide

range of practical applications hinges on how well these hurdles can be addressed.

1.5 Concluding remarks

Given the exploration of DNA as a programmable material in the past few decades,
we can now better identify in which applications nucleic acids excel. Even if Watson-Crick
base pairing and predictive thermodynamic models afford researchers precise control over the
structures and kinetics adopted by DNA or RNA in a given environment, nucleic acids in-
herently lack the chemical reactivity that is achievable with enzymes. In applications where
higher reactivity is necessary (e.g. ligand-specific binding, catalysis), this can be partially
remedied by modifications that expand the oligonucleotide alphabet to non-canonical or
charged nucleobases [73], [43], but a more generalizable approach is to combine standard pro-
tein components (e.g. antibodies or well-characterized polymerases) as a part of rationally
designed tools. For instance, oligonucleotide-tagged antibodies enable super-resolution mi-
croscopy on fixed samples by leveraging the kinetics of DNA probe binding in the technique
known as DNA-PAINT [103]. Also, the inclusion of polymerases and nucleases as parts of
synthetic biochemical networks can drive gene expression through the de novo production
or degradation of RNA transcripts, as mentioned earlier. Another realization is that the
design principles developed in DNA nanotechnology may pave the way for using novel, im-
proved polymers to program chemistry into the future. Despite its biological relevance and

the technologies that facilitate its use, DNA is not well-suited for all applications considered
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in the field. It is possible that analogous molecules (e.g. synthetic polymers) may one day
replace DNA in many of these technologies. Therefore, beyond its practical value in many
applications, the broader value of DNA rational design comes from its ability to provide us
with a first exploration of possible applications, where techniques for manipulating similar

polymers may be matured.
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Figure 1.1: Determination of thermodynamic parameters for predictive models of

DNA hybridization.

A. Using the nearest-neighbor model to predict duplex stability. The overall free energy of hy-
bridization of the duplex is the sum of all nearest-neighbor parameters included in the duplex
sequence. B. Baseline method for determination of overall duplex thermodynamics. Diagram is

based on Figure 2B in Mergny and LaCroix 2003, data shown is collected using high-resolution

melting.
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Figure 1.2: Forms of strand displacement.

A. Displacement due to end fraying. B. Toehold-mediated displacement. Domains with the same
color have the same or complementary sequence; hybridized regions are represented by colored

regions between strands. C. Toehold exchange. D. Remote toehold.
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Figure 1.3: Chemical computation: chemical reaction networks (CRNs) to strand-
displacement implementation.

A. CRN that encodes the addition function between species A and B, with species Y as output. B.
A deterministic CRN that encodes the maximum function between species A and B, with species

Y as output ([31]). C. Seesaw gate motif for implementing CRNS.
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Figure 1.4: In vitro transcription gate designs.
A. Multi-stranded transcription gate by Kim et al. B. Single-stranded hairpin transcription gate
by Kar and Ellington C. Tethered T7 RNAP design by Chou and Shih.
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Chapter 2

Repurposing next-generation sequencing platforms for

high-throughput profiling of DNA-based interactions|

Abstract. Next-generation sequencing (NGS) chips have been successfully repur-
posed as massively parallel platforms for mapping binding affinity of proteins of
interest to libraries of DNA or RNA targets. We explored the possibility of using
repurposed NGS platforms to map other biomolecular interactions - specifically,
DNA-DNA hybridization and polymerase-promoter activity - at scale. We found
that the size of Illumina MiSeq clusters limits the observable dynamic range to
4.24 kcal /mol in the best scenario, which is exceeded by many destabilizing nucleic
acid hybridization motifs, including multiple mismatches, larger bulges, and loops.
Using this platform, we were able to reproduce transcription activity rankings for

T7 promoter variants as reported by previous solution-based assays.

! This chapter includes original work by SSW. SSW received guidance from Ilya Finkelstein and Andrew
Ellington and funding for the project from Andrew Ellington. SSW would like to thank Stephen Jones, Jami
Kuo, Jim Rybarski, and John Hawkins for helpful discussions and technical support.
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2.1 Introduction

The thorough characterization of DNA and RNA hybridization has yielded sequence-
dependent models for predicting secondary structure. This in turn has enabled the structural
prediction of nucleic acid structures, including biologically potent RNAs (such as mRNAs,
IncRNAs, miRNAs, crRNA) and rationally designed components engineered for DNA nan-
otechnology. Beyond the basic Watson-Crick base pairings, the thermodynamics of structural
motifs such as bulges, loops, and dangling ends [164], as well as non-canonical interactions
like wobble base pairing [70], inosine base pairing [208], mismatches [164], and even un-
natural base pairing [91) O0] have been reported. Previous measurements of hybridization
stability have either utilized the inherent hyperchromicity of DNA and RNA of the duplex
to single-stranded transition (UV-Vis spectrophotometry) or the absorption of heat during
melting (isothermal titration calorimetry and differential scanning calorimetry). These meth-
ods balance the advantage of producing absolute thermodynamic parameters through direct
measurements with the disadvantages of being low-throughput and requiring large amounts
of material. As a result, investigations of interactions that scale combinatorially with the
features in question - for instance, multiple mismatches or mixed backbone modifications -

would quickly become intractable at these smaller scales.

For this reason, alternative high-throughput methods would facilitate the collection
of quantitative, predictive data, particularly for detailed models that include non-canonical
nucleic acid-nucleic acid interactions. DNA microarrays, which contain ssDNA libraries on
the order of thousands of variants, have been used to quantify the energetic impact and
associated nearest-neighbor free energy parameters of mismatches in DNA-DNA hybridiza-

tion [89]. Next-generation sequencing chips present a similar, larger-scale opportunity: each
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sequencing chip flow cell can present up to tens of millions of unique DNA sequences which
are spatially-addressable given positional data from its associated sequencing run. Previous
works have indeed repurposed Illumina chip-based platforms to profile protein-DNA interac-
tions, such as Gend-promoter affinity [137] or CRISPR-Cas target affinity [102], by assaying
the affinity of a protein of interest to a DNA library of millions of sequences all at once. In
fact, efforts have gone beyond mapping protein-DNA interactions to include RNA-protein
interactions by using the DNA library as a template for in vitro transcription and producing

a RNA library on the chip surface [20, [194].

Here, we investigated the feasibility of repurposing next-generation sequencing plat-
forms for high-throughput profiling of DNA-DNA hybridizations and RNA polymerase-
promoter activities. We expected that single-stranded probe-target binding would require a
comparatively simple experimental setup and that enzyme catalytic activities may be likewise
measurable if activity can be coupled to fluorescent signal intensity. We find that the speci-
fications of the Illumina MiSeq platform in theory limit its range of detection to association
reactions within a 4.24 kcal/mol range at optimal conditions, thus excluding significantly
destabilizing DNA-DNA hybridization motifs such as multiple mismatches or larger loop
(around length 6 or greater). Relevant RNA polymerase-promoter library interactions for
the T7 RNA polymerase, however, can be successfully assayed by the platform, and tran-
scriptional activities of promoter variants relative to the wildtype promoter sequence match
reported values from in vitro studies in the literature. Our findings suggest that repurposed
NGS flow cells can be valuable platforms for assaying protein-nucleic acid interactions at
incredibly large scale, but are not suited for profiling equally large sequence spaces in nucleic

acid-nucleic acid hybridization.
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2.2 Results

2.2.1 Limitations of hybridization profiling on a repurposed sequencing plat-

form

The Illumina MiSeq next-generation sequencing platform produces flow cells with
tens of millions of spatially-addressable clonal clusters up to 600 base pairs in length and
up to 1 micron in diameter [I]. Each cluster is produced by bridge amplification, which
increases fluorescence signals up to 3 orders of magnitude above single-molecule techniques,
by producing up to 1000 copies of the same sequence. After bridge amplification, clusters
consist of double-stranded duplexes in which one strand is covalently attached to the slide
surface and the other strand is its hybridized complement. Denaturation of the duplexes
transforms the surface of the MiSeq chip into an microarray-like platform containing surface-
immobilized single-stranded DNA strands (“targets”) organized by sequence into localized

individual clusters that bind a free-floating single-stranded probe.

Hooyberghs et al. have described the relationship between the fluorescence signal in-
tensity observed from probe binding on a DNA microarray to the free energy of hybridization

between the probe and target using the Langmuir model [89):

ACG_AG/RT

I= M= 1 a7

where I, the observed intensity, is proportional to 04, the fraction of a cluster that
is bound at equilibrium, by a constant scaling factor A; c is the concentration of the probe;
AG is the free energy of hybridization; R is the gas constant; and 7T is the temperature at

equilibrium. Assuming that the system is far from chemical saturation at equilibrium (i.e.
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only a small fraction of surface targets are hybridized, ce™2%/#T < 1), this approximates

to

I = Ace 2C/RT

Solving for AG gives

I
AG = —RTIn | =
G R n(Ac)

The energetic penalty of a mismatch is defined as the difference in the probe’s free
energy of binding to a mismatched target (AG,,,) compared to a perfectly matching target
(AGyy,) and can be experimentally observed as the ratio of their signal intensities (referred

to from here as the “intensity ratio”)

_ o [mm [pm . [pm
AAG = AGpym — AGp,, = —RT'In ( e > + RT In (Ac) = RTIn (Imm)

Mlumina MiSeq clusters contain between one and several thousands of copies of a
single sequence. This suggests that the largest signal intensity ratio possible is on the order
of 1000 (i.e. in the mismatched target cluster, <10 targets are bound to the probe while in the
perfect target cluster >1000 targets are bound). The detectable range of energetic penalties
varies with the logarithm of this ratio; at a poor intensity ratio of 10, only interactions less
than 1.41 kcal/mol from the perfect target-probe interaction can be measured, while at the
best intensity ratio of 1000, the dynamic range is increased to a AAG of 4.24 kcal /mol from
perfect target-probe (Figure ) The AAG of a single internal mismatch ranges from 1.86

to 5.97 kcal /mol in solution-based studies at 37°C [164]. Assuming it is possible to achieve the
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highest intensity ratio of 1000, 140 out of 192 possible internal single mismatch triplets have
energetic penalties that are within the theoretically detectable range at 37°C (Figure [2.1B).
Beyond mismatches, some motifs involving imperfect hybridization have reported energetic
penalties that fall within the detectable range; for example, loops (internal, bulge, or hairpin)
can range from 2.9 to 6.6 kcal/mol at 37°C [164]. Increasing the incubation temperature
can reduce the magnitude of energetic penalties, thereby fitting more interactions within
the limit of detection, since the AG of duplex formation is negatively linear with respect to
temperature; for instance, at an incubation temperature of 50°C, up to 160 single internal

mismatches are within the best detection range (Figure [2.1B).

The value of repurposing NGS platforms lies in the ability to observe millions of inter-
actions in parallel. This is particularly advantageous when the sequence space of interactions
is very large, warranting such high-throughput methods. Given that the penalty of a single
mismatch or other destabilizing motif already spans a large portion of the detectable range,
however, most hybridization interactions involving more than one destabilizing motif are
beyond the limit of detection on this platform. Further, contiguous mismatches are likely
to form bulges and result in penalties greater than the additive impact from each single

mismatch [164].

To experimentally confirm this limitation, we used a repurposed NGS platform adapted
from the CHAMP platform [102] to measure the energetic penalties of mismatches. Similar
to CHAMP, an [lumina MiSeq flow cell containing a library of target sequences (in our
case, single and double mismatches as well as several negative controls; Figure ) was
collected after a sequencing run and first denatured and washed to produce a single-stranded

surface-bound library with minimal fluorescent background. Unlike CHAMP, however, we
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did not regenerate the strand complements. Digoxigenin-labeled probe strand was added at
100 nM to the flow cell, and the cell was sealed and incubated at 50°C for 24 hours. Follow-
ing incubation, bound probes were visualized using fluorophore-conjugated anti-digoxigenin
antibodies and imaged by TIRF microscopy (Figure 2.2B). The measured intensities of the
negative control targets were averaged and considered as the background signal. As ex-
pected, most single mismatches were distinguishable from the background and had observed
intensities that correlated with the energetic penalty as predicted by parameters reported in
the literature (R? = 0.83) [164]. The majority of double mismatches (excluding contiguous
mismatches, for which thermodynamic parameters are unavailable) were compressed towards

the lower end of the detection range, being only slightly above background.

2.2.2 Profiling T7 RNA polymerase transcription activity for a library of syn-

thetic promoters

Despite their limitations in measuring nucleic acid-only interactions, repurposed NGS
platforms have been used to map in vitro protein-nucleic acid affinities with great success,
including protein-DNA [137, 102, O8] and protein-RNA interactions [20, 194]. We asked
whether interactions beyond binding affinity, such as transcription activity, could be stud-
ied using this platform. We considered the T7 RNA polymerase, a single subunit DNA-
dependent RNA polymerase that is highly specific in its recognition of its 17-nts promoter
sequence [28, [I80]. T7 RNAP is an invaluable tool in both molecular biology (e.g. for pro-
ducing RNA transcripts in vitro) and synthetic biology (e.g. for driving gene expression for
the production of proteins), where a library of promoter variants with known transcription

activities could allow transcription to be quickly tuned across a range of expression levels,
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which is particularly helpful for expressing toxic proteins or building multi-gene circuits.
Because it contains only a single subunit, T7 RNAP is both easily used and easily studied.
Highly related RNAPs (such as those from T3 or SP6) are similarly specific for their respec-
tive cognate promoter sequences, and orthogonal pairs of T7 RNAP-promoter interactions
have been engineered [190, [133]; this suggests that the landscape of polymerase-promoter
interactions is non-convex, and an exploration of the promoter sequence space may reveal

variants not observed in enrichment-based selection assays.

We randomized the -12 to -7 region of the T7 promoter to produce a 6N promoter
library (Figure ) The specificity loop of T7 RNAP recognizes the promoter through
contacts between residues of its specificity loop and the -12 to -8 region promoter region
[30]. Mutations to the promoter sequence at this region alters promoter recognition and
consequently impacts transcription activity [I57]. Our library fully covered all 4096 possible
variants, with nearly every variant represented in 100 or more reads; in addition, as negative
controls for transcription, a variant with a scrambled sequence in place of the T7 promoter
was added. To assay protein activity as a function of RNA produced, a TerB sequence
(Tus protein binding site) was inserted between the P7 and SP2a adapter sequences, and
a template for the MS2 hairpin sequence was included. Once Tus protein is added to the
flow cell and bound to the TerB site, transcribing T7 RNAPs stall at the Tus-TerB location,
which in turn prevents the release of the elongating strand and ensures that transcripts from
each promoter variant are location addressable (Figure2.3B) [20,194]. Fluorescently-labeled
MS2 coat protein is added to visualize the amount of RNA corresponding to a cluster through
association with transcribed tethered MS2 RNA hairpins, with signal intensity as a measure

of overall transcriptional activity.
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The highest measured intensity was observed in the wildtype promoter sequence
(CGACTC in the randomized region) (Figure [2.3[C). Weighing each variant by its average
measured intensity and finding a “weighted consensus” reveals the wildtype sequence (Fig-
ure ) To assess the accuracy of the repurposed NGS chip platform for profiling in vitro
transcription activity for various promoter sequences, we compared the relative transcription
activities observed on our platform to those reported in three previous studies that measured
transcription activity using either solution-based [I54] or NGS-based methods [147, 1T3]. Be-
tween our study and each of the three literature studies, our measured transcription activities
correlated well with the literature-reported activities for mutually-included variants (R2 of
0.84 or higher) (Figure . Two higher-activity promoter variants were common between
our study and all three previous studies, and four higher-activity variants were common to
our study and two previous studies (Figure 2.4A). In all datasets considered, these variants
ranked among the top below wildtype. The repurposed NGS platform was able to mea-
sure differential activity between the mutually-included variants, whereas the distribution
of measured activities for these variants were below the detection limit for methods used
in other studies (Figure and C). These results suggest that the repurposed NGS chip
platform can be used to measure the relative in vitro activities of promoter variants for T7

RNA polymerase at a large scale.

2.3 Discussion

We observed that NGS-based affinity mapping platforms are suited to the study of
protein-DNA interactions for a larger sequence space than for DNA-DNA interactions. This

suggests that, given the small range of detection, variations in protein-DNA complex stability
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that result from DNA sequence mutation are generally smaller than variations in DNA duplex
stability arising from similar mutations. In other words, DNA-protein interactions may
tolerate mutations better than DNA-DNA hybridization. This is not surprising considering
that DNA duplexes are stabilized by protein binding, and energetic penalties due to slightly
imperfect contacts between residues and minorly mutated dsDNA are relatively small in
comparison to the stability of the protein-DNA complex. Specifically in the case of T7 RNAP
initiation, while the thermodynamic impacts of specific promoter mutations have not been
documented, the scale of interaction energies involved for transcription may shed some light
on the impact of promoter mutations. Melting the initiation region of the duplex promoter
requires unwinding of the helix and bending the single promoter strands and thus takes
considerable energy; thus, it is estimated that extensive interactions between the polymerase
and single-stranded portions of the promoter generate up to 68 kcal/mol that are used
towards melting the promoter [214]. Part of this energy may come from polymerase binding,
which is estimated at -13.3 kcal /mol for binding to the wildtype [189]. A mutated specificity
region (-12 to -8) is unlikely to change the energy required to melt the initiation region (-4 to
+2) to form the transcription bubble, suggesting that if T7 RNAP is capable of association

with a mutated sequence, it will likely be capable of initiation.

The quantity measured with our platform, transcription activity, is a combination of
multiple rates, including association, dissociation, initiation, promoter clearance, abortive
cycling, elongation, and processivity [30, 214, 215, 54]. An advantage of surface-based ap-
proaches over solution-based methods is that with surface-based approaches it may be pos-
sible to individually study some of these factors. For example, association and dissociation

may be measured as the amount of fluorescently-labeled polymerase bound, initiation by the
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incorporation of fluorescently-labeled NTPs with one NTP depleted, and elongation by load-
ing a single RNAP per strand for single turnover and measuring MS2 hairpins transcribed

from a template of concatenated MS2 sequences.

Although the activities we measured matched reported activities from solution-based
methods, it is still valuable to validate the findings using other experimental modalities,
particularly for novel characterizations, since steric hindrance effects due to crowding at the
flow cell surface may affect binding and activity. In vivo studies should be performed to
confirm whether the interaction is robust in a cellular context. Chip-based high-throughput
profiling techniques will best benefit protein-nucleic acid profiling tasks that require a large
nucleic acid sequence space. Towards the future, it may be possible to use surface-addressable
DNA (or RNA) clusters to map the affinities of a library of nucleoprotein variants to singular
DNA or RNA probes, or even to express DNA sequences as peptide libraries for mapping
protein-peptide or target-peptide affinity. This latter application could complement in vivo
eukaryotic solution-based display platforms for high-throughput protein-target interaction
assays such as yeast surface display [72] or mammalian cell display [95, [179] by providing
biochemical insight on individual variants through large scale in witro binding assays for

titrations of target molecules.

2.4 Materials and Methods

Oligonucleotides and reagents. The target library for DNA-DNA mismatch hy-
bridization was purchased as a custom library from CustomArray. All other oligonucleotides,

including the T7 promoter library, fluorescent probes, digoxigenin probes, and primers, were

41



purchased as custom oligonucleotides from IDT. Next-generation sequencing was performed
on the Illumina MiSeq platform using either a 2x75, 2x150, or 2x250 paired end reagent kit.
Unless otherwise stated, all chemical reagents were purchased from Sigma Aldrich and all

buffers and enzymes were purchased from NEB.

Library preparation for next-generation sequencing. The custom oligonu-
cleotide T7 promoter library was PCR amplified using Q5 High-Fidelity DNA polymerase
(NEB, M04915S) in 1x Q5 Reaction Buffer (NEB, B9027S) with a final concentration of 200
uM of each ANTP (ThermoFisher, R0181) and 400 nM of the forward and reverse primers
on a PCR thermocycler with the following protocol: 3 min initial melting at 98C, followed
by 10 cycles of 30 sec melting at 98C, 30 sec annealing at 67C, and 30 sec extension at
72C, followed by a 3 min final extension at 72C. After amplification, the PCR products were
loaded onto a 1.2% agarose gel (NuSieve GTG, Lonza BioScience) and gel purified using a
QIAquick Gel Extraction Kit (Qiagen) following manufacturer’s instructions with the fol-
lowing exception: gel fragments were incubated for at least 20 minutes at 60C in Buffer QG
and the DNA product was washed 3x with Buffer PE prior to elution in nuclease-free water.
The finished library was then submitted to the UT Genome Sequencing Analysis Facility
(GSAF) for next-generation sequencing. Because both the DNA-DNA mismatch and T7
promoter libraries both have low base diversity, to ensure that the final sequencing chip does
not run into downstream analysis issues due to base diversity, an additional sample library
prepared from HeLa genomic DNA (NEB, N4006) was added to represent approximately
50% of the final reads of all runs.

DNA-DNA hybridization with CHAMP. The target probe sequence was de-
signed to have a GC-content close to 50%, a T,, between 40C and 50C, and have a G:C
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pairing on both 5" and 3’ ends. Target sequences and subsets of target sequences included

in the DNA library were assessed to find appropriate targets.

TIRF microscopy and microfluidics setup for CHAMP can be found in [102]. Unless
otherwise specified, all washing and loading steps were performed at a flow rate of 100
pl/min. Following NGS, the physical chip was washed with an initial denaturing solution of
0.1 M NaOH (300 ul) and 1X TE (300 pl). Resetting the chip between experiments consisted
of denaturation and removal of complementary strands using a 5 minute incubation in 60%
DMSO [203] and a 300 pl wash in 1X NGS Wash Buffer (0.3X SSC, 0.1% Tween-20), followed
by a proteinase K treatment consisting of incubating the channel for 45 minute at 42C in a
2 mg/ml RNA grade proteinase K solution (ThermoFisher, 25530049) in 1X TE and a 500
pl wash in 1X NGS Wash Buffer.

To perform hybridization experiments, the chip and its stage adapter were placed
into a plate incubator with the ends of the tubing adapter sealed to prevent evaporation.
Once the chip was equilibrated to the correct temperature, it was washed with 500 ul 1X
NNE Buffer (0.5 M NaCl, 10 mM Na2HPO4, 1 mM EDTA, pH 7.0), after which probe mix
(100 nM Target-Dig probe; 1X NNE buffer; 0.005% BSA, ThermoFisher; 1 pg/ml salmon
sperm DNA, FisherScientific) heated to the appropriate temperature was loaded onto the
chip and incubated. After the incubation period, the channel was washed with 1X NNE,
the chip and attached stage adapter were removed from the incubator and onto the TIRF
microscope. Primary (Anti-Dig rabbit, Invitrogen, 9H27L19) and secondary (Anti-Rabbit
goat 647N, Sigma 40839) antibodies were each sequentially loaded onto the chip, incubated
for 10 minutes at room temperature, and unbound antibodies were washed from the chip

with a 5 minute NGS Wash Buffer flow step. The chip was illuminated with a 633 nm laser
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(Ultralasers) at 100 mW and imaged at room temperature.

Protein purification. Preparation of Flag-Tus. The 6xHis-StrepTag-SUMO-Flag-
Tus coding sequence was previously cloned into pET-19 plasmid by members of the Finkel-
stein Lab. The purified plasmid was sequence verified by Sanger and transformed into chem-
ically competent BL21 (DE3) cells, and plated on LB agar with carbenicillin. An overnight
culture was prepared in 1X LB media at 37C. The following day, subcultures were prepared
using a 1:100 dilution of the overnight culture into 1X Superior Broth (SB) media contain-
ing antibiotics, shaken at 250 rpm at 37C in Erlenmeyer flasks, and grown until reaching
OD600 of 0.6. The protein was then induced using IPTG (0.1 M IPTG final concentration
in culture) and shaken at 37C for 4 hours. A 2 ml aliquot of the induced culture was taken
and miniprepped (Qiagen Miniprep Kit, manufacturer’s instructions) and Sanger sequenced
to confirm the presence of the plasmid and to check that no deleterious mutations to the

protein of interest had occurred. Cells were pelleted and frozen at -80C until use.

To purify the protein, frozen pellets were resuspended in Lysis Buffer, which consists
of 50 mM sodium phosphate pH 7.5, 100 mM NaCl, 1 mM EDTA, 10% glycerol, 0.2 mg/ml
lysozyme, 1 mM DTT, and 1 tablet cOmplete Protease Inhibitor Cocktail (Millipore Sigma)
per 50 ml of buffer. Cells were lysed by sonication (Fisher Scientific Sonic Dismembrator,
Amplitude = 75, total processing time = 1:30, pulse ON = 0:15, pulse OFF = 0:45) and
ultracentrifuged at 35k rpm for 40 minutes at 4C. The resulting supernatant was purified
by affinity chromatography in a Strep-Tactin (Iba Life Sciences) gravity column with 3 ml
total resin volume. The column was equilibrated with 20 column volumes (CVs) of Lysis

Buffer, after which the clarified supernatant was applied to the column. Bound protein was

washed using 20x CV Wash Buffer (50 mM Tris-HCI pH 7.5, 100 mM NaCl, 1 mM EDTA,
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1 mM DTT, 20% glycerol), eluted in 20 mM Elution Buffer (2.5 mM d-desthiobiotin, 50
mM Tris-HCI pH 7.5, 100 mM NaCl, 1 mM EDTA, 2 mM DTT, 20% glycerol), manually
fractionated and concentrated with an Amicon Ultra-15 centrifugal unit (Millipore Sigma) to
approximately 1 ml. Protein tags were cleaved using SUMO protease (purified by members
of Finkelstein Lab) at approximately 3 uM final concentration in a rotator overnight at 4C.
Cleaved Flag-Tus protein was isolated using a HiLoad 16/600 Superdex 200 pg size exclusion
column (SEC) (Cytiva). The sample was quantified by SDS-PAGE and stored in SEC Buffer
(50 mM Tris-HCI1 pH 7.5, 100 mM NaCl, 1 mM DTT, 10% glycerol) in 10 ul aliquots at -80C

until use.

Preparation of MCP-488. The 6xHis-SUMO-MCP-SNAPf coding sequence was pre-
viously cloned into pET-19 plasmid by members of the Finkelstein Lab. Preparation of the

pellet was identical to the preparation of Flag-Tus.

Procedures for pellet resuspension, sonication, ultracentrifugation, and gravity col-
umn purification were as previously described for Flag-Tus, except for the compositions of
Lysis Buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 1 mM EDTA, 0.1% Tween-20, 5% glyc-
erol, 1 mg/ml lysozyme, 0.0025 U/ul DNase I, 1 mM DTT, and 1 tablet cOmplete Protease
Inhibitor Cocktail per 50 ml buffer), Gravity Column Wash Buffer (50 mM HEPES pH 7.4,
500 mM NaCl, 1 mM EDTA, 5% glycerol), and Gravity Column Elution Buffer (10 mM
d-desthiobiotin, 50 mM HEPES pH 7.4, 500 mM NaCl, 1 mM DTT, 10% glycerol). Follow-
ing Strep-Tactin purification, the eluted sample was concentrated, and both SUMO protease
and SNAP-Surface 488 (NEB, S9124S) was added to the concentrated sample which was
gently agitated overnight at 4C covered by foil. The following day the cleaved and labeled
sample was purified using the SEC and washed with SEC Wash Buffer (50 mM Tris-HCI pH
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7.5, 500 mM NaCl, 2 mM DTT, 10% glycerol). Protein concentration was quantified and
dye labeling was confirmed through SDS-PAGE. Samples were stored in 20 ul aliquots at

-80C until use.

In vitro transcription assays on CHAMP. TIRF microscopy and microfluidics
setup for CHAMP can be found in [I02]. Unless otherwise specified, all washing and loading
steps were performed at a flow rate of 100 ul/min. Because a TerB sequence is inserted
immediately following the SP2a adapter, the first 6 nts of the TerB sequence were used as
the i7 index for NGS (AATTAG). Following NGS, the physical chip was washed with an
initial denaturing solution of 0.1 M NaOH (300 ul) and 1X TE (300 ul). To regenerate
complements to produce a double-stranded promoter library, a primer mix containing 500
1M each P7 primer and SP2b-complementary PhiX-digoxigenin primer in 1X Hybridization
Buffer (56X SSC, 0.1% Tween) was first loaded into the chip and incubated on the heat block
with the following protocol: 5 minutes at 85C, 30 minutes ramp down from 85C to 60C, 10
minutes ramp down from 60C to 40C, and 10 minutes at 40C with simultaneous 1X Wash
Buffer flow (0.3X SSC, 0.1% Tween). After primer annealing PCR mix (0.1 U/ul Klenow
Fragment exo- DNA polymerase, M0212L; 25 uM each dNTP, ThermoFisher; and 1X NEB
Buffer 2) was loaded into the chip, incubated 30 minutes at 37C. To test alignment for
the chip, primary antibody (Anti-Dig rabbit, Invitrogen, 9H271.19) and secondary antibody
(Anti-rabbit Atto 488 Goat, Invitrogen, A-11008) was each sequentially added at 1 pg/ml,
incubated in the chip for 10 minutes at room temperature, and washed with 1X NGS Wash
Buffer for 5 minutes, after which the chip was imaged in the blue channel at 10 mM. The
chip was then treated with Proteinase K as described earlier. The flow system was then

switched to 1X Running Buffer (40 mM Tris-HCI pH 7.5, 150 mM NaCl, 6 mM MgCl2, 1
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mM DTT, 0.1% Tween-20, 0.2 mg/ml BSA) and kept at 37C. The chip was washed for 5

minutes.

To assay in vitro transcription activity for the promoter library, Flag-Tus mix (500
nM Flag-Tus in 1X Running buffer) was loaded into the chip and incubated for 30 minutes.
After washing with 1X RNAPol Reaction Buffer (B9012S), the T7 transcription mix (2 U/ul
T7 RNA polymerase, M0251S; 200 uM each NTP; 5 mM DTT; 1X RNAPol Reaction Buffer)
was loaded and incubated for 30 minutes, followed by a 5 minute wash with 1X Running
Buffer. MCP mix was loaded (500 nM MCP-488 in 1X Running Buffer) and incubated for
30 minutes. The chip was then washed with 150 pl of 1X Running Buffer at 50 pl/min,

illuminated at 10 mW with a 488 nm laser (Coherent), and imaged at room temperature.

Data analysis. TIRF images were aligned to positional and sequence data included
in the fastq files associated with the sequencing run using the alignment code developed
for the CHAMP platform [102] (github.com/hawkjo/champ). Literature reported dG values
for mismatched DNA-DNA hybridization was calculated from nearest-neighbor parameters
reported in [I61] for matching base pairs and [164] for mismatched base pairs and adjusted

to the experimental sodium concentration.
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Figure 2.1: Theoretical limits of profiling with the repurposed Illumina MiSeq
flow cell.

A. Dynamic range of energetic penalties relative to perfect match (pm) that are detectable for
different ratios of perfect to mismatched (mm) observed intensities for an incubation temperature
of 37°C. B. Number of single mismatch triplets with energetic penalties within the detectable range
for an intensity ratio of 10, 100, and 1000. Lower plots show slices at 37°C and 50°C of all 192 single
mismatch triplets arranged in increasing order of energetic penalty. Fractions show the number of
triplets within the detectable range at a given intensity ratio; at 37°C the fraction at a ratio of 10
is omitted as no triplets are theoretically detectable. All values are calculated at [Na+] = 1 M;

note that different sodium concentrations will not change the energy penalty [161].
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design B. Experimental protocol and setup for T7 RNAP in vitro transcription on the CHAMP
platform. C. Transcription activity as a function of promoter sequence measured by background-

subtracted intensity. D. Specificity sequence weighted by transcription activity.
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Chapter 3

Developing predictive hybridization models for
phosphorothioated oligonucleotides using

high-resolution melting'|

Abstract. The ability to predict nucleic acid hybridization energies has been
greatly enabling for many applications, but predictive models require painstaking
experimentation, which may limit expansion to non-natural nucleic acid analogues
and chemistries. We have assessed the utility of dye-based, high-resolution melting
(HRM) as an alternative to UV-Vis determinations of hyperchromicity in order
to more quickly acquire parameters for duplex stability prediction. The HRM-
derived model for phosphodiester (PO) DNA can make comparable predictions to
previously established models. Using HRM, it proved possible to develop predictive

models for DNA duplexes containing phosphorothioate (PS) linkages, and we found

IThis chapter is adapted from a manuscript by Wang SS, Xiong E, Bhadra S, and Ellington AD (2022).
SSW and EX shared first authorship. SSW and EX conceived the project and performed the melting
experiments. SSW designed the sequences and performed all analyses. EX developed the protocol and
performed the CHA experiments. SB and ADE provided mentorship. ADE provided funding. SSW and
ADE wrote the manuscript.
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that hybridization stability could be predicted as a function of sequence and back-
bone composition for a variety of duplexes, including PS:PS, PS:PO, and partially
modified backbones. Individual phosphorothioate modifications destabilize helices
by around 0.12 kcal/mol on average. Finally, we applied these models to the design
of a catalytic hairpin assembly circuit, an enzyme-free amplification method used
for nucleic acid-based molecular detection. Changes in PS circuit behavior were
consistent with model predictions, further supporting the addition of HRM mod-
eling and parameters for PS oligonucleotides to the rational design of nucleic acid

hybridization.

3.1 Introduction

The programmability of nucleic acids for biotechnology and nanotechnology appli-
cations is based on the highly predictive thermodynamic properties of DNA and RNA hy-
bridization, which can be well-approximated by the nearest-neighbor model [41], 48| 193] 51].
In consequence, the stability of a given duplex can generally be accurately predicted from its
sequence [161) 162], [62] 199, 183, [78, 182]. Typically, nearest-neighbor model parameters for
nucleic acids are derived using UV-Vis spectrophotometry, relying on the hyperchromicity of
single-stranded DNA and RNA to capture the transition from duplex to denatured strands,
and consequently fit melting temperatures and other thermodynamic values pertaining to the
duplex. While such hyperchromicity methods can produce thermodynamic parameters that
are broadly applicable to various predictions because they result from direct measurements of
duplex melting, the material cost and low throughput of UV-Vis spectrophotometry can be

prohibitive, particularly in the case of expensive or precious non-canonical oligonucleotides.
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As a result, while nearest-neighbor parameters have been found for some non-canonical bases
[91] and unnatural backbones [107, 25], many other broadly employed chemical modifications
to DNA and RNA have yet to be similarly adapted to predictive models. The rational design
of nucleic acid hybridization for both structure and function is therefore generally limited to

the use of unmodified oligonucleotides.

High-resolution melting (HRM) represents a higher throughput and more cost-efficient
method for quantifying duplex stability and consequently deriving predictive parameters. In
this method, sequence non-specific intercalating dyes such as EvaGreen or LC Green obvi-
ate the need for custom fluorescent probes or fluorophore-quencher modifications, and can
be carried out in 96-well plate formats with volumes on the order of 10 ul and as little as
pmoles of material. HRM has been widely employed in molecular diagnostics to rapidly dis-
criminate between near-identical sequences through shifts in melting temperatures, and has
enabled applications such as single-nucleotide polymorphism genotyping and quantification

of mosaicism [197, 58].

In this study, we assessed the feasibility of HRM as a method for determining the
sequence-dependent thermodynamic parameters for phosphorothioated (PS) oligonucleotides.
We designed sets of phosphodiester (PO) DNA oligonucleotide duplexes with sequences that
maximally spanned the space of nearest-neighbor nucleotide pair parameters and determined
the T, of each duplex at various concentrations using HRM with EvaGreen intercalating dye.
We fitted transition thermodynamic parameter enthalpy (AH), entropy (AS), and free en-
ergy (AG) to the collected T, values using Van'’t Hoff analysis and then derived approximate
nearest-neighbor parameters using singular value decomposition. While a potential drawback

to using HRM to characterize nucleic acid duplex thermodynamics is the introduction of sys-
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tematic errors due to binding interactions with intercalating dyes, we find that it is possible to
apply a linear correction to HRM-derived model predictions (i.e. AGadjusted-37 = AGHRM-37 -
3.73 keal/mol 4 0.19 kcal /mol /base pair x sequence length) and thereby generate predictions
comparable to those made by models derived from hyperchromicity data. Using HRM, pre-
dictive models for DNA duplexes containing PS modifications were fitted, PS modifications
were incorporated into a DNA-based amplification circuit and changes to circuit behavior
that corresponded to predictions were observed. HRM methods can therefore potentially
accelerate the use of nucleic acid modifications in rationally designed oligonucleotides for a

variety of applications, including for antisense oligonucleotide design.

3.2 Results
3.2.1 Derivation of thermodynamic parameters with high-resolution melting

To derive approximate thermodynamic parameters using HRM, we designed a set of
sequences that achieved the maximum number of linearly independent sequences possible
given constraints between parameters [78]. To evenly represent all parameters in sequence
space, we designed 3 sets of sequences that each attained maximum rank in the stacking
matrix (i.e., the combinations of nucleotide pairs needed to fully cover the parameter space)
and combined these sets to produce a total of 66 sequences. The sequences ranged between
12 and 30 bases in length, with predicted T;,, values between 50°C and 80°C, as this suited
the temperature range of the qPCR machine used for analysis (37°C to 98°C). Sequences
were also designed to have secondary structure that were less stable than -1 kcal/mol at

37°C and 0.5 M NaCl, as calculated by NUPACK [21§].
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We performed HRM with an EvaGreen intercalating dye on thermally annealed du-
plexes that comprised each sequence in the designed set and its complement, at concentra-
tions ranging from 1 uM to 20 uM. For each concentration, the 7}, was determined as the
peak in the —dF'/dT of the melting curve. We applied linear regression to the 7T}, series using
the Van’t Hoff equation and thereby determined AH, AS, and AG5, values (after adjusting
to 1 M NaCl as reported by [161]) (Fig[3.1). In general, R? values were greater than 0.95.
Experimentally derived, non-salt-adjusted AH, AS, and AG5y values are reported in the

Supplemental Information.

Parameters for AH, AS, and AGx for fitted PO-PO internal nucleotide pairs and
terminal nucleotides are shown in Table Since duplexes were predicted to have melting
temperatures within a 50-80°C range, the reported AG was extrapolated to 50°C (AGs)
to minimize the impact of heat capacity changes on unfolding. Although errors (standard
deviation) for fitted AH and AS parameters were high, the fact that AH and AS are
highly correlated led to much smaller errors for the derived AG parameters (which rely on

entropy-enthalpy compensation) [163].

Parameter values from the HRM-derived model were on average higher (i.e. less stabi-
lizing) than values reported in previous nearest-neighbor models. This is due to concentration-
dependent interactions with the dye [I73]; in general, while the dye stabilizes the duplex and
therefore increases the measured T,, the magnitude of the increase depends on the ratio
of dye to duplex. We therefore measured T}, at different dye concentrations for the same
duplex concentrations and indeed observed that the shift in 7, varies by dye/duplex con-
centration ratios (Fig , resulting in a larger upward shift to the calculated AG for lower

dye/duplex ratios. To apply a correction for dye effects, we reasoned that the strength of the
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effect should correlate with the number of intercalation sites on the duplex, which in turn
is a function of overall duplex length. We selected a total of 16 duplexes whose AG values
had been previously calculated from hyperchromicity measurements, ranging from 10 to 16
nucleotides in length [162] 183 19, 143]. We avoided sequences containing homopolymer runs
greater than 4 bases, as our own sequence designs originally excluded these. We used AH
and AS parameters from our HRM model to predict AGs; of each sequence (AG3-HRM)
and fitted a linear length-dependent correction that adjusted this value to match as closely
as possible reported values extracted from melting as assessed via hyperchromicity. Uncor-
rected AG37-HRM predictions were consistently higher (i.e. less stable) than the reported
value. An equation to correct for dye intercalation, AGurm + A X SequenceLength + B,
was fitted to minimize the residual sum of squares (RSS) value between predicted and re-
ported values, resulting in values 0.19 and -3.73 kcal/mol for A and B, respectively. The
corrected model had a RSS of 12.44 compared to 7.25 for previously established hyper-
chromicity models [161], a great improvement over the uncorrected model, which had a RSS
of 54.36 (Fig . These results show that, with some simple adjustments, HRM can be
used to build predictive models for approximating duplex stability, and potentially provides
a high-throughput and cost-efficient route to characterize novel nucleic acid duplexes that

otherwise lack sequence-dependent models.

3.2.2 Predictive models for duplexes with fully-PS strands

Having proved the basic method’s applicability, we attempted to establish approx-
imate models for duplex stability with DNA strands containing entirely phosphorothioate

(PS) linkages, for which sequence-dependent parameters had not been previously determined.
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We anticipated that PS duplexes should be well-approximated by nearest-neighbor models
since the thiol modification does not alter the structure of nucleobases and base-stacking
has been shown to be the major energetic contributor to helix stability [41, 48]. While
our study used non-stereospecific PS oligonucleotides, the different properties of the R, and
Sp-stereoisomers have been shown to have relatively minor impacts on duplex stability, es-

pecially in comparison to the impact of sequence composition [23].

We studied two types of duplexes: a PS DNA strand paired with an opposing PS
DNA strand (PS-PS), and a PS DNA strand paired with a PO DNA strand (PS-PO). Our
sequence sets included the same 66 sequences described previously for PO-PO. Because PS-
PO duplexes are hybrid duplexes that are not “symmetrical” about the base pairing axis
(unlike PO-PO and PS-PS), a larger set of parameters was needed, since no nucleotide pair
was redundant. This “asymmetrical” model contained a total of 16 internal nucleotide pair
parameters and 8 terminal nucleotide parameters (Fig [3.7). We again performed leave-
one-out cross-validation to compare the fit of the symmetrical model with and without
terminal parameters for PS-PS duplexes (Fig , and the asymmetrical model with and
without terminal parameters for PS-PO duplexes (Fig . As was previously observed
for PO-PO duplexes, the inclusion of the terminal parameters significantly improved 7T,
prediction accuracy (RMSE of 3.04°C to 1.60°C for PS-PS and 2.84°C to 1.73°C for PS-
PO). Addition of terminal parameters largely improved AG prediction in PS-PS (RMSE of
0.69 kcal/mol to 0.38 kcal/mol), but not in PS-PO (0.63 kcal/mol to 0.62 kcal /mol). Fitted
parameters for the symmetrical model for PS-PS and for the asymmetrical model for PS-
PO duplexes are shown in Table [3.2] and Table [3.3] respectively. Terminal parameters are

clearly important inclusions to HRM-derived duplex stability models for accurate prediction
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of thermodynamic properties such as AG and T,,. Interestingly, we observed an increase
in stability of the terminal parameters as the duplex included more fully PS strands: an
average of 0.51, -0.52, and -1.25 kcal/mol for each terminal nucleotide for PO-PO, PS-PO,
and PS-PS, respectively. This could indicate that although sequence composition is a key
determinant of duplex stability in all 3 backbone conditions, it has a smaller impact on
overall duplex stability in PS-PS duplexes than in PO-PO and PS-PO duplexes, possibly

due to global helix destabilization by extensive phosphorothioation.

3.2.3 Predictive models for duplexes with partially phosphorothioated strands

Next, we investigated how to best model the thermodynamics of duplexes containing
strands that contain a mix of PO and PS linkages. To increase the generality of our methods,
we selected 2 new sequences unrelated to the previous 66 we had used and designed a set
of partially PS-modified strands for each sequence ranging from 1 to 9 modifications. We
combined these partial-PS strands with either fully-PO or fully-PS complement strands to
produce 10 duplexes that varied in the number of total PS modifications: from 0 (i.e. two
fully PO strands); to 1, 4, 9, and 19 (i.e., a fully PO top strand with a fully PS bottom
strand and vice versa); and ultimately to 20, 23, 28, 38 (i.e., two fully PS strands). The AG
values of each partially-modified duplex were once again experimentally determined using
HRM at a range of concentrations. To predict the AG of duplexes with partially-modified
strands, we used the parameters from models fitted without terminal parameters, since
individual modifications likely have unique impacts on global stability, and our terminal
parameter models were based on fits for the global stability of duplexes containing fully

phosphorothioated strands.
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Comparing the measured and predicted AG values, we found that the model predicted
the stability of the partially-PS duplexes fairly well, resulting in an R? of 0.94 and 0.82 for
the two sequences tested (Fig ) Predictions were more accurate for duplexes in which
fewer than half of all linkages were PS. Across all sequences in our set, we found that PS

linkages resulted in an energetic difference of 0.115 £ 0.04 kcal/mol per modification, on
average (Fig[3.3B).

The stabilities of partially-modified duplexes can thus be approximated in a sequence-
dependent manner by nearest-neighbor type models, with a few caveats. First, transitions
from one phosphate backbone to the other may result in energetic penalties that depend
on a sequence context beyond nearest neighbors, since more modifications will result in an
overall change in structure. This was best seen by the departure in prediction accuracy
with increasing phosphorothioate modifications. Second, the lack of terminal parameters
means that predictions will only hold true for a limited range of sequences. In the absence
of terminal parameters specifically determined for duplexes at various levels of modification,
using internal parameters alone to make predictions will cause shorter partially-modified

duplexes to proportionally depart greater from experimental values.

3.2.4 Predicting the impact of phosphorothiate modification on rationally de-

signed nucleic acid circuits

Rationally designed nucleic acid systems have been used for a variety of applications,
including enabling sensitive detection of analytes, precise assembly of nanoscale structures,
and even chemical computation [I75, 33 88]. This programmability comes in part from

the fact that experimental nucleic acid hybridization parameters often closely match theory,

60



allowing accurate designs.

As an example, catalytic hairpin assembly (CHA) is an in vitro DNA-based signal
amplification reaction capable of achieving up to hundreds-fold amplification of nucleic acid
inputs [212, [119], making it potentially useful for diagnostic applications [I18]. CHA designs
to date have derived in large measure from predictions by programs such as NUPACK [21§]
that in turn rely on experimentally determined nearest-neighbor parameters. By modify-
ing the sequence of key regions, CHA circuits have been engineered to operate at various

temperatures [96] and to have reduced background leakage [97, [15].

While changes to circuit stability can be achieved by introducing mismatches or short-
ening sequence domains, modification of the backbone with phosphorothioates could also
serve to destabilize hybridization of a given duplex relative to a fully phosphodiester coun-
terpart. For example, the use of PS modifications (combined with additives such as single-
stranded DNA-binding proteins and urea) has already enabled enzyme-mediated isothermal
amplifications to operate with high specificity at lower temperatures [22]. Moreover, PS
modifications should also prove useful for imparting nuclease resistance to DNA circuits

mixed with biological samples [177].

To further investigate whether and how PS modifications can impact circuit design,
we generated a catalytic hairpin assembly (CHA) circuit that contained a hairpin (H1) that
was fully phosphorothioated (PS-H1) (Fig Table B.5]). This circuit was based on a previ-
ously published high-temperature CHA (HT-CHA) circuit with an operating temperature of
60°C [96]. We predicted that the circuit would now have a lower effective temperature range,
and that its performance could be predicted via the models we have developed. In greater

detail, at the maximum operating temperature of 60°C, the unmodified intermediate (i.e.
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PO-H1:catalyst complex) and product (i.e. PO-H1:PO-H2 complex) species exhibit duplex
stabilities of -23.3 kcal/mol and -37.8 kcal/mol in the hybridized region, respectively. Our
model predicted that the modified versions of these complexes would have these same stabil-
ities at 50.1°C (PS-H1:catalyst) and 46.0°C (PS-H1:PO-H2) (Fig|[3.5)A), suggesting that the
circuit with PS-H1 would have a maximum operating temperature of around 50°C. In fact,
when CHA was carried out with PS-H1 a decrease of activity beyond 50°C was observed
(Fig [3.5B), in accord with modeling. A much lower overall signal was also observed with
PS-H1 than with PO-H1 (e.g. peak activity of 25 a.u./min compared to 150 a.u./min). This
was likely due to the reduced stability of the H1:Reporter complex as a result of phospho-

rothioation of the H1 strand.

We then tested how smaller-scale PS modifications, such as modification of individual
domains, can impact circuit behavior. To this end, we started with a previously developed
low-temperature CHA (LT-CHA) circuit designed for operation at 37°C [96] as a starting
point and generated versions of LT-CHA circuits with strands that contained one or more PS-
modified domains. We chose to modify LT-CHA since LT-CHA components are less stable
and therefore more sensitive than their high-temperature counterparts to small energetic
penalties (i.e., 0.12 kcal/mol per PS modification). These include a catalyst strand with a PS
domain 1 (C*1), a catalyst strand with a PS domain 2 (C*2), a fully-modified catalyst strand
(C*123), and a hairpin 1 with a PS tochold (PS-H1*1), as well as their PO counterparts
(Table Fig|3.6/A). In the first step of CHA, the toehold of H1 binds to the single-stranded
catalyst, and H1 is unfolded by the catalyst to form the Hl:catalyst complex. Thus, the
H1:catalyst complex must be energetically favored over the folded H1 structure to drive the

reaction forward. To show the predictive power of our model, we estimated the difference in
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duplex stability between the hairpin:PS catalyst complexes and the folded PO hairpin (i.e.
AAG = AG-H1:C - AG-Folded PO H1), which should correlate with circuit activity. In
accord with PS destabilization and our model, a loss of activity was expected for CHA with

PS-modified components.

In fact, the initial activity rates of chemically modified CHA circuits showed a good
correlation with respect to AAG (Fig[3.6B). For example, modifying domain 1 in only hairpin
1 of CHA with PS residues increased AAG of the PS H1:C complex to to -0.65 kcal/mol
and resulted in 75% of the original CHA activity, while modifying domain 1 in both hairpin
1 and the catalyst strand increased AAG to -0.13 kcal/mol (i.e. only slightly favoring the

forward reaction) and showed 30% of original activity.

3.3 Discussion

In this work, we carried out HRM experiments to develop approximate thermody-
namic models for PO-PO, PS-PO, and PS-PS DNA duplexes, the latter two of which do not
yet have published sequence-dependent models. Based on our analysis, 7}, determination by
HRM with the EvaGreen intercalating dye resulted in models that slightly underestimated
the stability of duplexes (ie. predicted higher AG values). While part of the skew may
be due to dye intercalation [I31], simply assuming a linear relationship between possible
dye-binding positions (correlating with the total number of base-pairs) and the degree of
destabilization allowed adjustments to be made, to the point where predictions were similar
to those derived from UV-Vis hyperchromicity models. Overall, the biases accorded to dye

binding were fairly minor, with an average correction of 0.19 kcal/mol per base.
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More generally, there are notable differences between HRM and UV-Vis measurements
that should be taken into account when fitting model parameters. The indirect nature
of HRM allows high-throughput 7), measurements (i.e., compatible with 96-well plates)
and relatively low concentrations (down to 1 M oligonucleotide), resulting in more rapid
and scalable model development. However, T,,-HRM (the 7}, defined by HRM) must be
derived from the -dF /dT plot rather than by regression curve fitting or baseline extrapolation
methods [140, 148, 132} [151] typically used to determine T,,-UV-Vis (the T,,, defined by UV-
Vis; the value at which half of all duplexes are bound), because curve fitting and baseline
extrapolation are not sensitive enough to detect the duplex-to-single-stranded transition in
HRM data at lower concentrations. Overall, this results in a ~1-2°C difference between T,,,-
HRM and T7,,-UV-Vis [140]. HRM-based models therefore trade off opportunities for rapid
and high-throughput modeling with lower accuracy. Depending on ultimate applications, 7,-
HRM should prove useful for quickly generating models for the increasing range of chemistries
available to oligonucleotides, especially backbone or sugar ring modifications that introduce
a new degree of freedom that, in conjunction with nucleobase sequence, might require a

combinatorially large (and synthetically intractable) set of duplexes to fully characterize.

By demonstrating that phosphorothioate duplexes, like phosphodiester duplexes, can
be represented by a nearest-neighbor type model, we set the stage for the development
of predictive models that can inform the designs of modified sequences that contribute to
practical applications, such as nucleic acid circuitry. Our results showed that duplex stability
decreases with an increasing number of modifications, with each modification resulting in
an average energetic penalty of 0.12 kcal/mol. Destabilization via phosphorothioation was

shown to affect circuit dynamics in a predictable manner and therefore provides a design
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strategy beyond merely editing sequence. In addition, considering that PS modifications
have been regularly used in the design of therapeutic antisense oligonucleotides [45], our
predictive models may narrow the range of designs, thereby reducing time and cost for
testing candidates. For example, ATL1102 is a 20-nts antisense oligonucleotide designed for
treatment of multiple sclerosis that is fully phosphorothioated and additionally includes 2’-O-
(2-methoxyethyl) modifications and methylated cytosine and uracil bases [122] [8]. Based on
the PS-PO HRM model and assuming a physiological sodium concentration of 141 mM [I55]
and an oligonucleotide concentration of 10 nM, for a PS-PO duplex of the same sequence with
no additional modifications we predict a T, of 37.0°C, which is physiological temperature.
In general, under physiological conditions, we predict that fully-PS DNA oligonucleotides
with 7T, values within 0.25°C of 37°C can range in length from 13 to 26 nucleotides. Into
the future, hybridization models rapidly determined by HRM for other commonly used (and
currently unmodeled modifications) — such as 2’-O-methoxyethyl, morpholino, and peptide

nucleic acids — may also impact the the efficient design of oligonucleotide therapeutics.

3.4 Materials and Methods

Reagents and oligonucleotides. All oligonucleotides were ordered from Inte-
grated DNA Technology (IDT, Coralville, TA, USA). PS DNA oligonucleotides were pro-
duced through non-stereospecific chemical synthesis; as a result, PS oligonucleotides used in
this study may contain either the R, or S, diastereomer at each modified position. All chem-
icals were purchased from Fisher Scientific (Waltham, MA, USA). Oligonucleotides used for
model parameter determination are listed in Table [3.4] and those used for CHA are listed

in Table and [3.6] Oligonucleotides were stored at 100 pM in nuclease-free water at

65



-20°C. Reactions were carried out in 1x NNE buffer (500 mM NaCl, 10 mM Nay,HPO,, 1
mM EDTA, pH 7.0) for HRM experiments and 1x TNaK buffer (20 mM Tris-HCI, 140 mM
NaCl, 5 mM KCI, pH 7.5) for CHA.

Sequence design for parameter determination. Each sequence can be repre-
sented as a linear combination of nearest-neighbor nucleotide pairs [79]; the linear combi-
nations of pairs that make up a set of sequences can be represented together as a stacking
matrix. The duplex thermodynamic value (i.e. AG, AH, AS) of a given sequence is the
sum of the contributions of each parameter in the duplex. Thus, in the example of AG,
given a set of sequences represented by stacking matrix A, we can represent the duplex AG
of all sequences in the set as a vector 5, where b is the product of the stacking matrix and

the vector of all parameter AG contributions .

A z b
Nseql,AA/TT Tseql,AT/TA - - - AGAA/TT ACTYseql

Nseq2, AA/TT  Tseq2, AT/TA ---| ° AGAA/TT = AGseq2

The sequence set was designed to have a rank of 20, which is the maximum rank for
nearest-neighbor stacking matrices [78, [79]. The final set contains 66 total sequences and

consists of three 20-sequence subsets that independently attain rank 20.

T,, measurement, determination of thermodynamic values, and model fit-
ting. Each duplex was annealed prior to melting experiments by adding equivalent amounts
of top and bottom strands to obtain a final concentration of 25 uM and incubated for 5

minutes at 95°C followed by a 0.1°C/s ramp down to 20°C. The annealed sequences were
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used to prepare 4 replicate samples at various final concentrations (1, 2.5, 5, 7.5, 10, 15, 20
uM), and each sample was adjusted to contain 1x NNE buffer and 1x EvaGreen dye (20x
EvaGreen dye in water purchased from Biotium, Hayward, CA). HRM data was collected
in the Roche LightCycler96 qPCR machine (Roche Molecular Systems, Inc., CA, USA) at
excitation 470 nm and emission 514 nm. dF'/dT was calculated using the Roche LightCycler
Software version 1.1.0 (Roche Diagnostics International) by selecting “Add Analysis” and
“Im calling”. T, is defined as the peak of the dF'/dT curve, and samples without distinct
peaks were excluded from the analysis. We used linear regression to fit the melting data to

the equation

LR (G, AS
T. AH "\ 1 AL

to estimate duplex AH, AS, and by extension, AG. AG was extrapolated to 50°C
to minimize heat capacity changes of unfolding. Values of AS or AG were adjusted to 1 M
NaCl during the fit using the salt correction reported in [I61]. Unadjusted values are reported
in the Supplemental Data. A total of 4 sequences in the PO-PO dataset, 1 in the PS-PO
dataset, and 2 in the PS-PS showed high AH error (>30% of fitted AH value) were removed
on the basis that high error during Van’t Hoff analysis suggests either non-two-state behavior
or incorrect concentration. In each dataset, the set of remaining sequences maintained the
maximum rank of 20. All errors reported are standard deviations of the parameter fits.
Sequence AS and AH variances for each sequence were determined by regression and used

to calculate AG variances as described in [163].

For each model, the sequence variances were transformed into the parameter basis,

67



resulting in a covariance matrix (CNN). To allow us to drop covariances between parame-
ters while not underestimating the error, we found the smallest diagonal covariance matrix
C{n in the parameter space such that the matrix inequality Cxy < C{y holds. Variances
derived from Cyy are guaranteed to be equal to or overestimate the error on parameters;
we report the standard deviations of these parameters. We performed all data analyses us-
ing Python, including linear regression to the Van’t Hoff equation (scipy.optimize.curve_fit),
singular value decomposition (numpy.linalg.svd), minimization of residual sum of squares

(scipy.minimize), and convex optimization for finding C{y (cvxpy).

CHA fluorescence kinetic reading. A 2.5 uM stock of reporter complex was
prepared by mixing 2.5 uL of RepF (100 uM stock in 1x TNaK buffer), 5 ul of RepQ (100
1M stock in 1x TNaK buffer), 10 uL of 10x TNaK buffer, and dH20 to reach a final volume
of 100 uL, followed by annealing. A two-fold excess of RepQ was added to ensure efficient
quenching of RepF, which is not expected to interfere with the readout of H1:H2. Prior to
the experiments, folded solutions of H1 at 5 uM (5 pL of 100 M stock solution, 10 pL of 10x
TNaK buffer, and 85 uL. of dH20) and H2 at 10 uM (10 pL of 100 uM stock solution, 10 uL
of 10x TNaK buffer, and 80 pL of dH20) were individually prepared from their respective
100 M stock solutions by a 5 minute incubation at 95°C followed by a 0.1°C/s ramp down to
20°C. Reaction mixtures (total volume of 25 uL) contained the following final concentrations
in 1x TNaK buffer: 200 nM folded H1, 400 nM folded H2, 50 nM annealed reporter complex,
1 uM polyT (dT21), and various concentrations of the catalyst strand (500 nM, 250 nM,
125 nM, and 50 nM). Reaction mixtures were loaded to a 96-well plate and immediately
transferred to the LightCycler96 plate reader (Roche Molecular Systems, Inc., CA, USA) for

fluorescence measurements conducted at 37°C or higher (excitation: 470 nm, emission: 514
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nm).
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Nucleotide Pairs AGs AH AS
(PO-PO) (kcal/mol)  (kcal/mol)  (cal/K/mol)
AA/TT -0.83£0.14 -8.10+£1.68 -22.5+4.8
AT/TA -0.56=0.10  -5.53+£1.35 -15.4+3.9
TA/AT -0.58+0.12  -6.40£1.49 -18.0+4.3
CA/GT -0.95£0.15 -6.89+£1.70 -18.4£4.8
GT/CA -0.94+0.15 -7.12+£1.88 -19.1+5.3
CT/GA -0.94+0.14 -7.51+£1.63 -20.3+4.6
GA/CT -0.88+0.14 -6.51£1.84 -17.44+5.3
CG/GC -1.62£0.16 -10.81+£2.03  -28.5£5.8
GC/CG -1.76+£0.16 -12.68£1.98  -33.8£5.6
GG/CC -1.09+0.15 -6.09£1.71 -15.5+4.8
EA/ET 0.49+0.40 20.73£4.98  62.6+14.2
AE/TE 0.48£0.40 20.20+£4.89  61.0£13.9
EC/EG 0.63+£0.40 21.07£4.93  63.2+14.0
CE/GE 0.43+£0.40 18.09+4.84  54.7+13.8

Table 3.1: Approximate thermodynamic parameters for PO-PO (phosphodiester-
phosphodiester) duplexes derived from HRM data.
All reported values are adjusted to 1 M NaCl and 50°C. PO-PO = Phosphodiester-phosphodiester

duplexes. Errors are defined as the standard deviations of the parameter fits.
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Figure 3.2: Comparison of AG predictions made by the HRM-derived model and
reported UV-Vis models

14 literature reported sequences are included. RSS = residual sum of squares.
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Nucleotide Pairs AGsx AH AS
(PS-PS) (kcal/mol)  (kcal/mol) (cal/K/mol)
AA/TT -0.26+0.03 -4.36£0.77  -12.7£2.3
AT/TA -0.16+0.02  -3.64+£0.52  -10.8£1.5
TA/AT -0.11+£0.01  -1.93£0.53  -5.6%£1.6
CA/GT -0.52+0.02  -5.52£0.57  -15.5£1.7
GT/CA -0.50+0.03 -3.95£0.75  -10.7£2.3
CT/GA -0.50+0.03 -4.16£0.64 -11.3£1.9
GA/CT -0.57+0.03 -5.07£0.90  -13.9£2.7
CG/GC -1.06+0.04 -6.16£1.01  -15.8£3.0
GC/CG -1.04+0.04 -6.90£0.77  -18.1£2.3
GG/CC -0.85+0.03 -5.09£0.83  -13.1£2.5
EA/ET -1.30£0.08  3.24+£2.05 14.0£6.2
AE/TE -1.28+0.08 4.18+2.02 16.9£6.1
EC/EG -1.20+0.08  1.4741.98 8.3+5.9
CE/GE -1.20+0.08  0.64%2.05 5.74+6.1

Table  3.2: Approximate  thermodynamic parameters for PS-PS

(phosphorothioate-phosphorothioate) duplexes derived from HRM data.
All reported values are adjusted to 1 M NaCl and 50°C. All internal nucleotide parameters have
PS linkages both in the top nucleotide pair and in the bottom pair (e.g. 5’A*A/3’T*T). Errors

are defined as the standard deviations of the parameter fits.
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Nucleotide Pairs AGs AH AS
(PS-PO) (kcal/mol)  (kcal/mol) (cal/K/mol)
AA/TT -0.524+0.20 -5.8143.12 -16.449.1
AT/TA -0.4240.10 -5.6441.69 -16.244.9
AC/TG -0.88+0.11 -8.66+1.85 -24.1+5.4
AG/TC -0.71£0.09 -6.13+£0.85 -16.842.3
TA/AT -0.304+0.10 -3.8641.90 -11.0+5.6
TT/AA -0.49+0.07 -5.87£0.64  -16.7£1.7
TC/AG -0.644+0.16 -6.13+£2.71 -17.0+7.9
TG/AC -0.77+0.15  -7.2842.75 -20.248.0
CA/GT -0.824+0.17 -7.23+£2.67  -19.8£7.7
CT/GA -0.66+0.19 -6.30+3.21 -17.5+9.4
CC/GG -0.91+0.11 -5.57£1.57  -14.4+4.5
CG/GC -1.214+0.18  -8.0743.09 -21.249.0
GA/CT -0.85+0.12  -7.92£2.38  -21.9+£7.0
GT/CA -0.61+0.14 -5.46+2.27  -15.0£6.6
GC/CG -1.15+0.15 -6.63+2.26 -17.0+6.6
GG/CC -1.09£0.17 -7.75£2.81 -20.648.2
EA/ET -0.574+0.40 13.644+6.63  44.04+19.3
AE/TE -0.544+0.37 15.07£6.01  48.3+17.5
ET/EA -0.594+0.39 14.87+6.29 47.8+18.3
TE/AE -0.56+0.38 14.724+6.18  47.3+18.0
EC/EG -0.584+0.33 10.31£5.35  33.7+15.6
CE/GE -0.55+0.38 10.49+6.30 34.2+18.4

Table  3.3: Approximate  thermodynamic parameters for PS-PO

(phosphorothioate-phosphodiester) dup71£iexes derived from HRM data
All reported values are adjusted to 1 M NaCl and 50°C. All internal nucleotide parameters have a
PS linkage between the top nucleotide pair (e.g. 5’A*A/3'TT). Errors are defined as the standard

deviations of the parameter fits.
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Asterisks indicate sequence complement. Complexes of multiple strands are denoted with a colon.
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Figure 3.5: HT-CHA with PO- and PS-H1.

H1 strand backbones are either fully PO or PS. (a) Duplex stability predictions for interactions
involving PO-H1 or PS-H1 (hybridized region only, symmetrical model). Gray dotted line indicates
the target stability or the duplex stability of PO-H1:catalyst or PO-H1:H2 at 60°C, the temperature
for which the HT hairpins were originally designed [96]. (b) Initial rates of HT-CHA with PO-H1

or PS-H1 at various incubation temperatures. Catalyst strand is fully PO.
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Number Sequence Number Sequence Number Sequence

1 CTGTAAGGCGATATGTT 23 TTAACCTGCAATGGATC 45 TACTTCCAACGTAGG

2 TGCCATGTTGAAAACC 24 GCGGTTGGTGGCCAAC 46 ACGGGTCGTTCCGTG

3 TATTCTGCCAATGGAAC 25 CACAGCGACATGTATGG 47 GTGGTACAAATGCGACC

4 GGTTGCGGTGGCCAAC 26 CCCAGGCCTCGGATTTA 48 AGCACGGTGGTACAACA

5 CGACATGTATGGCACAG 27 CTCAGAGTAGAGCCGA 49 GGTGGCGTTCTT

6 CTCGGAGGCCCCATTTA 28  AGGAGTGAATGAAATGG 50 TCTACACCGCGA

7 CCGCTCAGAGTAGAGA 29 GAACTGCCACTACCAA 51 ACTGTATCGCCCTA

8 AATGAGGAGTGAAATGG 30 CTACCAGCGGCGCCGTT 52 CCGTTGCTGCTAGG

9 GCTGAACTAACCACCA 31 GCAGGAGCCGCGACCTG 53 TAGACGCGGCCTCTTTCC

10 CCACTAGCGGCGCCGTT 32 AGCTGAGCCTGCCGCC 54 CTAAACTGTTATAGCCGG

1 GAGGCAGCCGCGACCTG 33  GCCCGAGCATGACTGCG 55 TGTAAGACTTCTGCCAGAAA

12 AGAGCGCCCTGCTGCC 34 AATGTCGAACAGCAATT 56 CGCGCGAGTATTTATAACCT

13 GATGCCGCAGCGACCTG 35 GTGAAACAATGCTGTAG 57 TTCTACATCCATCTTAATCCCA

14 AACGAATGTCAGCAATT 36 CAAGCCTCGATTTTGT 58 AGACATCCCATACGAGCATCCA

15 GCTGTGAAACAATGTAG 37 GTGAGCAGAAGGGGTT 59 ACATGACTCATCTTAGCCGGCGAG
16 CGATTTTGTCAAGCCT 38 ACTCGCTCTACCTTAAT 60 CGGGATTTCTGGCATCATTGTCCT

17 GAGCAGAAGGGGTTGT 39 CTTTTGTGCGGGTAGC 61 TAATTATACGAGTAGTTTCTGTCCTG
18 ATAACTTACTCTCGCCT 40 TTCGCGGTCTCCATTA 62 GATTGTATCATCGACATCACACTACC
19 CGGTGCTTTTGGTAGC 41 CGTGCAGCACTACTTG 63 CAAACTTAGTAATCACGCCCAGCAACCA
20 TCTCGCGGTTCCATTA 42 GTCATTGTGCTTTTGC 64 GATCTCTCTATCATCGTTTATTGGGTAT
21 CGTGTGGATAATTAGCT 43 GAACCGTTGATGATCTC 65 TTGTAGTTGACGTTTGTGATTTAGTGAATT
22 TTGAAAACCCATGTGC 44 TGTCGCACCCTACTA 66 TTTGGGTTAGTAAGAAGGCAGCAGTTGGGC

Table 3.4: Sequences used for nearest-neighbor parameter determination.
Sequences were hybridized to their complements prior to HRM. Fully phosphodiester and fully
phosphorothioate versions of each sequence listed were used in the study. Sequences maximally

span the space of nearest neighbor pairs (i.e. sequences are maximally independent).
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HT-CHA Sequence
HT-H1 GTCACGTGA GCTAGCGTT AGCATCGTCG CCATGCTGCTAGCA
CGACGATGCT AACGCTAGC CCTTGTCA TACGCAGCAC
G*T*C*A*C*G*T*G*A* G*C*T*A*G*C*G*T*T*
A*GHCRART X CHGHFT*C*Gr CHCHAFTHGHCHT*GHCFTHA*GHCRA*
HT—H1-PsaII C*G*A*C*G*A*T*G*C*T* A*A*C*G*C*T*A*G*C*
CHCHTHTHGHFT*CAA* THAXCHGFCFA*GHCRA*C
HT-H2 AGCATCGTCG TGCTAGCAGCATGG CGACGATGCT
AACGCTAGC CCATGCTGCTAGCA
A*G*C*A*T*C*G*T*C*G* T*G*C*T*A*G*C*A*G*C*A*T*G*G*
HT-H2-PSall ~ C*G*A*C*GHAXT*G*CHT* AXA*CHGHCHTHA*GHC*
C*C*A*T*G*CHAFT*G*CAFT*A*G*C*A
HT-Catalyst CGACGATGCT AACGCTAGC TCACGTGAC
HT-RF /56-FAM/ GTGCTGCGTATGACAAGG GCTAGCGTT
HT-RQ C CCTTGTCA TACGCAGCAC /BIABKFQ/
HT-Domain 1 TCACGTGAC
HT-Domain 2 AACGCTAGC
HT-Domain 3 CGACGATGCT
HT-Domain4 CCATGCTGCTAGCA
HT-Domain 5 CCTTGTCA
HT-Domain 6 TACGCAGCAC

Table 3.5: Sequences and domains used for high-temperature CHA.
Asterisks in sequence indicates positions with PS backbones. Different domains are indicated by

different colors. /56-FAM/ = 5’ Fluorescein; /3IABkFQ/ = 3’ Iowa Black FQ.
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LT-CHA Sequence

GTCAGTGA GCTAGGTT AGATGTCG CCATGTGTAGA

LT-HT CGACATCT AACCTAGC CCTTGTCATAGAGCAC
G*T*C*A*G*T*G*A GCTAGGTT AGATGTCG
LT-H1-PS1 CCATGTGTAGA CGACATCT AACCTAGC CCTTGTCA
TAGAGCAC
LT-H2 AGATGTCG TCTACACATGG CGACATCT AACCTAGC
CCATGTGTAGA
*GHRARTRGRT*(C*
LT-H2-PS3 A*GFAFT*G*T*C*G TCTACACATGG CGACATCT

AACCTAGC CCATGTGTAGA
LT-Catalyst CGACATCT AACCTAGC TCACTGAC
LT-Catalyst-PS1 CGACATCT AACCTAGC T*C*A*C*T*G*A*C
LT-Catalyst-PS2 CGACATCT A*A*C*C*T*A*G*C* TCACTGAC
C*G*A*CFA*T*C*T* A*A*C*CHT*A*G*C*

LT-Catalyst-PSall THCHARCHTHGHA*C

LT-RF /56-FAM/ GTGCTCTA TGACAAGG GCTAGGTT
LT-RQ C CCTTGTCA TAGAGCAC /3IABKFQ/

LT-Domain 1 TCACTGAC

LT-Domain 2 AACCTAGC

LT-Domain 3 CGACATCT

LT-Domain4 CCATGTGTAGA

LT-Domain 5 CCTTGTCA

LT-Domain 6 TAGAGCAC

Table 3.6: Sequences and domains used for low-temperature CHA.

Asterisks in sequence indicates positions with PS backbones. Different domains are indicated by

different colors. /56-FAM/ = 5’ Fluorescein; /3IABkKFQ/ = 3’ Iowa Black FQ.
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POPO model comparison with leave-one-out cross-validation (n=62)
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Figure 3.8: Leave-one-out cross-validation on the PO-PO HRM dataset for AGx
and T,, (concentration = 10 pM)

Top row = without including terminal nucleotide variables, bottom row = including terminal
nucleotide variables. Color of dots represents length of sequence. The dashed line y = z is added

to guide the eye. RMSE = root mean square error.
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PSPS model comparison with leave-one-out cross-validation (n=64)
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Figure 3.10: Leave-one-out cross-validation on the PS-PS HRM dataset for AGx
and T,, (concentration = 10 pM)

Top row = without including terminal nucleotide variables, bottom row = including terminal
nucleotide variables. Color of dots represents length of sequence. The dashed line y = z is added

to guide the eye. RMSE = root mean square error.
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PSPO model comparison with leave-one-out cross-validation (n=65)
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Figure 3.11: Leave-one-out cross-validation on the PS-PO HRM dataset for AGx
and T,, (concentration = 10 pM)

Top row = without including terminal nucleotide variables, bottom row = including terminal
nucleotide variables. Color of dots represents length of sequence. The dashed line y = z is added

to guide the eye. RMSE = root mean square error.
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Chapter 4

Parallel and in-memory computation with data stored

in DNA using strand displacement]!|

Abstract. DNA is an incredibly dense storage medium for digital data, but com-
puting on the stored information is expensive and slow as it requires rounds of
sequencing and de movo DNA strand synthesis. To augment DNA storage with
“in-memory” molecular computation, we use strand displacement reactions to al-
gorithmically modify data stored in the topological modification of DNA. A sec-
ondary sequence-level encoding allows high-throughput sequencing-based readout.
We show that computation can occur in parallel across multiple data. We demon-

strate multiple rounds of parallel binary counting and cellular automaton Rule 110

! This chapter is adapted from a draft manuscript by Wang B, Wang SS, Chalk C, Ellington AD, Solove-
ichik D. BW and SSW shared first authorship. BW, CC, and DS devised the project. CC and BW designed
the SIMD DNA strand-displacement algorithms. BW designed the experimental protocol for SIMD DNA
and performed all SIMD computations, post-computation ligation and displacement, and fluorescence exper-
iments. SW performed all post-computational library preparation, sequence and data analysis, and qPCR
assays. BW and SW prepared the figures with feedback from all authors. BW wrote the initial draft of
the manuscript which was later edited by all authors. DS and AE obtained funding and provided guidance
throughout the project.
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computation on 4-bits data registers, as well as selective access and erasure. Avoid-
ing stringent sequence design, we demonstrate large strand displacement cascades
(122 distinct steps) on naturally-occurring DNA sequences. Our work merges DNA
storage and DNA computing and sets the foundation of massively parallel algorith-

mic manipulation of digital information kept in DNA.

4.1 Introduction

DNA is an incredibly dense (up to 455 exabytes per gram, 6 orders of magnitude
denser than magnetic or optical media) and stable (readable over millennia) digital storage
medium [39, 27]. Storage and retrieval of up to gigabytes of digital information in the
form of text, images, and movies have been successfully demonstrated [I38]. Importantly,
DNA’s essential biological role ensures that the technology for manipulating DNA will never
succumb to obsolescence. While these properties make DNA a promising storage medium, it
is at present limited to the storage of rarely accessed data (“cold” storage) largely due to its
inefficient read-write cycle. Performing computation on the stored data involves sequencing
the DNA, electronically computing the desired transformation, and synthesizing new DNA,

which is an expensive and slow loop.

Here we design a new paradigm called SIMD||DNA (Single Instruction Multiple Data
DNA) which integrates DNA storage with massively parallel in-memory computation. As
shown in Figure [4.1JA, unlike traditional DNA data storage where information is encoded
in the nucleotide sequence, SIMD||DNA encodes information in a register, a multi-stranded

DNA complex with a unique pattern of nicks and exposed single-stranded regions. There are
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as many independent registers as the number of molecules of the multi-stranded complexes,
each capable of storing and manipulating a different value. To manipulate information, an
instruction (a set of DNA strands) is applied to the registers. The strand composition of
a register updates if the applied instruction strands trigger strand displacement reactions
within that register. Strand displacement reaction has become a widely versatile building
block in engineering nucleic acid based systems. Displacement occurs when an input strand
invades a multi-stranded complex through binding to a toehold (single-stranded region with
five to seven nucleotides) and then displaces the incumbent strand as an output. Through this
mechanism, the strand composition, patterns of nicks, and exposed single-stranded regions
in the registers are changed. Instruction strands are synthesized independently of the data
stored in the registers, so that executing an instruction does not require reading the data.
After the non-reacted instruction strands and reaction waste are washed away, subsequent
instructions can be performed. Because all registers share the same sequence space, each set
of instructions can perform multiple unique strand displacement reactions across multiple
registers. This utilizes the parallelism granted by molecular computation (Figure ) Our
DNA data processing scheme is capable of parallel, in-memory computation, eliminating the
need for sequencing and de novo strand synthesis on each data update. Additionally, the
doubly-parallel nature of SIMD|[DNA programs allows instructions to act on all registers

and multiple sites within a register in parallel.

We constructed the theoretical framework for SIMD||DNA and proved the correctness
of two molecular programs: binary counting (a fundamental function in computer program-
ming) and cellular automaton Rule 110 (a Turing universal computation) [200]. We then

experimentally implemented these programs and demonstrated correct computation for in-
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memory and parallel computation for a pool of 16 registers encoding all possible 4-bit binary
values. To scale up the computational power, we show that the registers can be repeatedly
processed prior to read out by conducting multiple rounds of computation. In addition, like
a computer’s memory, information stored in the SIMD||DNA paradigm can be specifically
queried (random access) or erased. Registers can be constructed using both chemically syn-
thesized DNA and naturally-occurring DNA (i.e. non-genetically modified sequences), fur-
ther reducing the dependency on custom oligonucleotide synthesis. We show that unmodified
kilobase-length M13 phage plasmid provides a large storage space that allows information
size to be scaled up, by constructing multiple sub-registers for parallel computation. So
far this is the largest strand displacement system using naturally-occurring DNA sequences:
Using SIMD||DNA, we implemented 18 distinct strand displacement reactions in solution at

the same time, and in total 122 distinct strand displacement reactions.

4.2 Results
4.2.1 SIMD||DNA

Figure[4.1|shows the overview of SIMD||DNA. Every register contains a long “bottom”
strand and multiple short strands, called top strands, bound to the bottom strand. We use
domain to represent consecutive nucleotides that act as a functional unit. Complementary
domains are represented by a star (). The length of the domains is chosen such that: (1)
each domain can initiate strand displacement (i.e. can act as a toehold), (2) strands bound
by a single domain readily dissociate, and (3) strands bound by two or more domains cannot

dissociate. Each bottom strand is partitioned into sets of consecutive domains called cells
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(Figure[4.1|C). Each cell contains the same number of domains. Cells encode information with
the binding configuration of their top strands (e.g. lengths, presence or absence of toeholds).

For the programs we designed, we used a binary encoding with each cell representing one

bit.

Each instruction of a program corresponds to the addition of a set of DNA strands
at high concentration to a solution containing the registers. The registers are attached to
magnetic beads, allowing washing away of beadless non-reacted instruction strands and re-
action waste. Registers and instruction strands are allowed to react for a short amount of
time before washing such that the high concentration instruction strands interact with the
registers, but the low concentration waste products do not. The instruction strands can
cause three different types of events (Figure ) Attachment reactions preserve all the
strands originally bound to the register and attach new strands (as long as the new strand
binds strongly enough—by two or more domains). The attachment of an instruction strand
can lead to a partial displacement of a pre-existing strand on the register. Displacement
reactions introduce new strands to the register and detach some pre-existing strands. Upon
binding to a toehold on the register, the instruction strand displaces pre-existing strands
through 3-way branch migration. Toehold exchange reactions are favored towards displace-
ment by the instruction strand since they are added at high concentration. Two instruction
strands can also cooperatively displace strands on the register. Detachment reactions de-
tach pre-existing strands without introducing new strands to the registers. An instruction
strand that is complementary to a pre-existing strand with an open overhang can use the

overhang as a toehold and pull the strand off the register.

To experimentally implement SIMDI||DNA, considerations for readout need to be
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incorporated in the design (Figure ) To read out parallel computation results where
registers share the same sequence space, registers with different initial values are given their
own barcode sequences. Since information is encoded in the pattern of the top strands,
direct readout requires obtaining the location of nicks. To read out the stored information
through sequencing while preserving the desired computation logic, we modified the encoding
by introducing mismatches between the top strands and the register in a manner that can
coexist with the nick-based encoding. Since mismatches can affect strand displacement
kinetics [129], the mismatch locations are carefully chosen to ensure that the desired strand
displacement reaction is favorable. This secondary encoding allows us to read out the data
stored in a heterogeneous pool of registers after ligating the nicks, PCR amplifying the
products, and applying next generation sequencing (NGS). The resulting NGS reads, which
correspond to proportionally amplified computation products, each encodes a 4-bit value
and collectively represent the output of the computation. As in regular DNA storage, this
readout method is destructive; however, a small sample can be taken, leaving most of the

solution intact.

4.2.2 Binary Counting Program

We first start with the binary counting program: beginning from arbitrary initial
counts stored in different registers, each computation step increments all the registers in
parallel. Compared to counting in electrical circuits at the hardware level, where complicated
modules are required (a full adder requires at least 2 XOR gates, 2 AND gates and an OR
gate—18 transistors total), binary counting in SIMD||DNA requires only 7 instruction steps

independent of the size of input. Binary counting requires changing all 1s to 0 starting from
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the least significant (rightmost) bit to more significant bits until the first 0, and changing that
0 to 1. All bits to the left of the rightmost 0 remain the same. As shown in Figure the
SIMD||DNA program encodes states 0 and 1 by two different sets of top strands. One extra
domain is included to the right of the rightmost cell which is used to initiate displacement.
Starting from the rightmost domain, the program erases all 1’s in between the rightmost
cell and the rightmost state-0 cell (Instructions 1 and 2), and changes those cells to 0 at
Instructions 4 and 5. The rightmost state-0 cell is first marked (Instruction 3), and then
changed to state 1 (Instructions 6 and 7). We previously proved the correctness of the
program in our previous work [200]. Note that the binary counting program requires a
strand displacement cascade (Instructions 1) and the depth of the cascade is dependent on

the number of consecutive 1’s to the right of the rightmost 0.

To further reduce SIMD||DNA’s dependence on artificially designed long oligonu-
cleotides as bottom strands, we chose to assemble registers using the M13mpl8 single-
stranded DNA plasmid from the M13 bacteriophage without modifications to the original
sequence. Phosphoramidite synthesis, currently the golden standard for de novo synthesis
of single-stranded oligonucleotides, becomes increasingly error-prone as a function of strand
length. On the other hand, naturally-derived DNA is ensured to have both high fidelity and
high quality DNA as a result of biological error-correcting mechanisms. The single-stranded
M13 bacteriophage plasmid is a staple of DNA nanotechnology that has been widely used
as scaffolds for DNA origami [I59]; similarly, it could potentially accommodate computation
with SIMD||DNA on several hundreds of bits. Despite these advantages, naturally-occurring
DNA is typically not used in strand displacement due to the potential for undesired sequence

complementarity. While artificially designed sequences can be optimized to minimize sec-
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ondary structure (e.g., using a 3-letter alphabet [224], computational tools like NUPACK
sequence designer [206], or other tools [224] [60]), naturally-occurring DNA may contain ther-
modynamically stable secondary structures that trigger undesired spurious interactions or
prevent desired displacement from completing and ultimately producing incorrect computa-

tion results.

Rather than designing the sequence, we pursued the use the naturally-occurring DNA
without significant sequence optimization: We screened different regions on the M13mp18
plasmid for viability by first eliminating areas with undesirable secondary structures (specifi-
cally, G-quadruplexes and hairpins [A] [I59]) from consideration and then selecting 9 random
addresses as candidates at which we encoded sub-registers (Figure [£.2B). We tuned the do-
main strength and categorized the encoded registers according to the binding strengths of
some domains: weak (sub-registers 1 through 3), medium (sub-registers 4 through 6) and
strong (sub-registers 7 through 9). Each category is expected to react at different exper-
imental conditions as a result of the domain strength; for example, registers with strong
binding strength are expected to require higher temperature or longer reaction time. We
tested initial values 0010 and 0011 with different reaction temperatures (Figure on these

9 sub-registers, and then picked 5 for further experiments.

We first performed SISD (single instruction single data) computation on sub-register
8 for each of the 16 4-bit initial values. All registers within each test tube contained the same
initial value of sub-register 8. After NGS sequencing, reads were organized according to the
barcode sequences associated with their encoded initial values, and the percentage of reads
representing the correct value was calculated. More than 90% of the registers can be success-

fully assembled, processed, and sequenced (Figure ) After a round of binary counting
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computation, sub-registers affiliated with all 16 initial values show the correct output as the
dominant output (Figure [£.2C), with the minimum correct percent at 68%. We observed
similar results for sub-register 3 (Figure ) We then performed SIMD computation on
sub-register 8 by pooling registers with all 16 initial values in the same test tube (Figure
for computation . Figure shows that all the initial values were updated correctly, with
the minimum correct ratio at 60%. After testing different incubation temperatures (Fig-
ure , we achieved similar computation results on sub-registers 7 and 9 (Figure at a

higher temperature.

We then investigated the ability to store and compute data on multiple registers si-
multaneously with SIMD|[DNA. We tested parallel computation on multiple sub-registers
assembled on M13. Each M13 molecule was assembled with both sub-registers 7 and 9 at the
temperature compatible to both (Figure . For each step of the computation, instruction
strands for both sub-registers were applied simultaneously. As shown in Figure 4.2]E, most
registers produced the highest readcount for the correct output, with the minimum correct
ratio at 15%. This reduction of yield could be due to spurious cross-talk between the in-
struction strands for sub-registers 7 and 9. Additionally, as the success of computation is
dependent on experimental conditions, this reduced accuracy may also stem from operating

at a sub-optimal temperature for each register as a compromise for compatibility.

4.2.3 Rule 110 Program

In addition to binary counting, we also implemented a program that simulates ele-
mentary cellular automaton (CA) Rule 110. An elemental cellular automaton [207], one of

simplest models of computation, consists of an infinite set of cells with two states, 0 or 1.
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At each time step, updates to a cell depend on the states of its left and right neighbors. A
simple two-rule characterization of Rule 110’s transition rule is as follows: 0 updates to 1 if
and only if the state to its right is a 1, and 1 updates to 0 if and only if both neighbors are

1. Critically, Rule 110 has been shown to be Turing universal [40].

The SIMD||DNA program for implementing one time step evolution is shown in Fig-
ure m Theoretically, SIMD||DNA’s in-memory computation model is as powerful as any
other space-bounded computing technique. In other words, our space-bounded simulation of
Rule 110 immediately gives that any computable function can be computed by a SIMD||DNA
program, if the required space is known beforehand. Note that the Rule 110 simulation in-
vokes two sources of parallelism: instruction strands are applied to all registers in parallel,
and every cell within a register can update concurrently. This contrasts with binary counting

where instruction 1 requires a cascade of strand displacement reactions across multiple cells.

To experimentally implement the Rule 110 program, we used M13 sequences as well
as artificially designed sequences. Since the encoding of information 1 contains an exposed
region, to enable ligation and sequencing, a set of “seal” strands were applied to all the
registers after performing parallel computation on all 16 initial values to fill in the gaps
on the patterns of the top strands (Figure ) We confirmed that the Rule 110 program
updated correctly for the 16 registers encoded with artificially designed sequences-the correct
values are the dominant output (Figure ; the control for registers without computation

are shown in Figure 4.11). We achieved similar results using the native M13 sequence as

seen in Figure [{.12]

96



4.2.4 Random Access

A related desired functionality for DNA data storage is to be able to selectively
address or read out a specific subset of data registers, a process commonly referred to as
random access. Random access avoids reading out everything at once, thereby destroying all
data. Traditional DNA storage uses PCR to selectively amplify data [138] or selectively pull
out information by tuning the binding affinity between sequences [I3]. However, designing
sequences or multiplexed orthogonal PCR probes with high specificity can be challenging.
Additionally, it is necessary to reconstruct the database for information update after if a
single piece of data is read. On the other hand, strand displacement achieves specificity
through kinetically and energetically favorable reactions that displace a pre-existing strand.
In SIMD||DNA, every register is prepared with unique barcode sequences corresponding to
different initial values; these sequences can serve as a point of access for specific registers.
Another feature of random access is that it allows selective erasure. Accessing data can
selectively destroy a subset of the database (data erasure) but leaves the remainder available
for further computation. Instead of reconstructing the database, a new, edited register can
simply be added to a previously-accessed database as an update. In principle, in SIMD||DNA
programs, after computation on multiple registers, displacement strands with unique barcode
sequences can be added to the solution to release registers with the matching barcodes from
magnetic beads. Thus, every register can be queried separately for read out from the register

mix.

We experimentally demonstrated parallel computation and random access of both
the Rule 110 and the binary counting programs. We show that registers can be sequentially

accessed by adding a series of different displacement strands with distinct barcodes (Fig-
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ure ) We mixed all 16 registers to perform Rule 110 computation. After computation,
we first added a displacement strand with a barcode corresponding to 0011 and processed
the displaced registers (ligation, PCR amplification, sequencing). Next, we added another
displacement strand with a barcode corresponding to 1001 to query the second register. Fi-
nally, we added all 16 different displacement strands (corresponding to all 16 barcodes to
access all of the information. The sequencing results confirmed that, for the first and second
queries, the desired register is the dominating register among the registers displaced from

the mix.

Registers can be accessed in parallel by adding different displacement strands to
different register mixes at the same time (Figure . All the queries were successful
and at least 23% of registers show the correct value. Accessing a register also performs
selective erasure of the data. Following displacement of one specific register, we added all
14 displacement strands to displace the remaining data from the register mix. We observed
that reads corresponding to the displaced register were notably less abundant compared to

reads corresponding to all other registers. (Figure 4.15])

4.2.5 Sequential computation

Finally, we scaled up the computational power of SIMD||[DNA through sequential
computation. We began with the Rule 110 program (Figure ) and prepared 4 sets of
register mix containing 5 distinct registers, each encoding a unique initial value. Each set
went through one of the following processes: no computation, one round of computation,
two rounds of computation, and three rounds of computation. After these processes, all

registers from the register mix were ligated, displaced from magnetic beads, PCR amplified,
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and sequenced. In the first round of computation, we confirm that all initial values included
in the register mix produced the correct value as the dominant output, with the correct value
encompassing at least 83% of all reads. In the second round of computation, all initial values
again achieved the correct value as the dominant output, with the correct value represented
in at least 34% of all reads. In the final round, all but one initial value produced the
correct value as the dominant output; for this initial value, the correct value was observed

in approximately 10% of all reads.

For the binary counting program, we first prepared 7 sets of register mix containing
all 16 registers (Figure [4.16]B, left panel). One set did not go through any computation and
served as a control. The other 6 sets initially went through one round of computation. As part
of another experiment, a different register was random accessed (and therefore erased) from
each set (results in Figure . For 3 of the 6 sets, all remaining registers were displaced
and sequenced, and the analyzed results were pooled together to account for the missing
registers (Figure , middle panel). The other 3 sets were subjected to another round of
computation, followed by access of all remaining registers, post-computation processing, and
sequencing. Likewise, the two-round computational results of these 3 registers were pooled
in our analysis (Figure [4.16]B, right panel). After the first round of computation, the correct
value was represented in at least 22% of all reads for each initial value; following the second

round of computation, the correct value was present in at least 12% of all reads.

To investigate the limit of multi-round computation, we quantified the amount of
product remaining after each round of computation using the C, value as determined by
qPCR (i.e. the number of cycles needed to detect a signal above background) and quan-

titative electrophoretic techniques. In qPCR, the signal strength is dependent on the con-
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centration of the sample and doubles at each cycle. Thus, for two samples with C, values
C; and Cs, the ratio of their concentrations can be calculated as 26172, We calculated a
yield of roughly 38% for each round of computation (Figure ) To corroborate these
results, we additionally used an Agilent 2100 BioAnalyzer instrument to measure product
concentrations for dilutions of the computation products. We observed a similar yield with
multi-round Rule 110 computation, with an average of about 28% per round. This product
loss can be attributed to magnetic beads lost due to washing (=~ 59% yield) and imperfect
ligation (possibly from gaps resulting from incorrect computation or incomplete ligation by
T4 ligase). From our analysis, we determined that approximately 70% of the product loss
results from bead loss during washing, and only about 30% is caused by imperfect ligation.
This indicates that the yield can be significantly improved by a better washing technique.
Theoretically, using the same protocol, we can perform up to 27 rounds when storing registers

with 10,000 different values (Figure {4.18)).

4.3 Discussion

We proposed and implemented the in-memory and parallel computation architecture
SIMD||DNA as a new DNA data storage paradigm. In practice, we performed in-memory
and parallel computation of two programs, binary counting and cellular automaton Rule
110, on 4-bit registers, which can be constructed using both naturally existing sequences
and artificially designed sequences. To demonstrate that the computational power may be
scaled up, we implemented random access memory and multiple rounds of sequential compu-
tation. We investigated the completion level of some of the instructions, which finish quickly

since instruction strands are added at high concentration and no slow strand displacement
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mechanisms (e.g. 4-way branch migration) are involved. However, strand displacement sys-
tems can be error prone. Undesired triggering reactions (i.e. leak) can come from fraying
at the nicks in the registers and undesired opening of domains, both of which may lead to
strands being mistakenly displaced or binding incorrectly. The SIMD||DNA programs pre-
sented here are not robust to leak. We mitigated leak by allowing registers and instructions
strands to react for a short amount of time before washing. This favors the faster desired
strand displacement events while slower leak reactions are unfavored. However, in situations
where undesired reactions are fast, leak can be a major source of error; this raises the ques-
tion of whether leakless design principles [191] 20T, 202] can be imposed on SIMDI||DNA

constructions.

Our method of storing information in DNA is motivated by recent developments in
DNA storage employing topological modifications of DNA to encode data [186]. Although we
use chemically synthesized strands to assemble registers, it is possible to programmatically
cut naturally existing DNA and form strand breaks at desired locations as a high-throughput
method of writing information into registers. In contrast to storing data in the DNA sequence
itself, encoding data in nicks sacrifices data density but could reduce the cost of large-scale
de novo DNA synthesis by repurposing biologically-derived DNA. Other than the approach
we have taken to adapt SIMD||DNA for sequencing (i.e. including a secondary sequence
encoding with mismatches and performing ligation), recently developed Nanopore sequenc-
ing methods could potentially read information encoded in nicks and single-stranded gaps
directly in double stranded DNA in a high-throughput manner [125]. Registers can also be
affixed to the surface of a microfluidic chip to achieve autonomous control of reacting with

instruction strands and elution, which could increase both the yield and scale of computation.
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Information stored in the DNA sequence has been argued to be stable for thousands
of years [39]. In contrast, SIMD||DNA stores information in the pattern of nicks, and as a
result, stored data may be more prone to change since it is possible that the pattern of nicks
is more readily disrupted than the DNA sequence itself (e.g. via undesired 4-way branch
migration between different registers). In addition to the methods used in traditional DNA
data storage to increase the longevity [77,[94], it is possible to seal the nicks reversibly through
light-induced photochemical ligation [44]. Our current encodings in SIMD||DNA store data
at a density of approximately 0.03 bit per nucleotide, a decrease from traditional storage
schemes that encode information in the DNA sequence itself for a theoretical maximum data
density of 2 bits per nucleotide. In principle, data density can be increased by using different
encoding schemes, such as allowing overhangs on the top strands to encode information.
In our current implementation of reading out SIMD||DNA products, we use mismatches to
differentiate bit information, which is orthogonal to the logic encoding. It may be possible to
increase data density by encoding logic information through mismatches so that the effect of
an instruction depends on the difference in binding stability or kinetics between mismatched

and perfectly matched sequences.

Designing DNA strand displacement systems that can readily utilize naturally-occurring
sequences is still a challenge. There are several advantages to using naturally-occurring
DNA over artificially designed and chemically-synthesized DNA. First, the length and fi-
delity of biologically-produced DNA far exceeds those attainable by chemical synthesis [93].
With phosphoramidite synthesis, currently the standard technique for de novo production
of oligonucleotides, oligonucleotides longer than 100 nucleotides (such as those required for

SIMD||DNA registers) are likely to be truncated and consequently trigger leak reactions.
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Further, if the displacing strand is truncated it may not be able to fully displace the in-
tended target, resulting in low completion. Thus, current chemical synthesis techniques
have an upper bound of oligonucleotide length under reasonable yield requirements, which
limits the design of DNA architectures. Most schemes therefore avoid using oligonucleotides
of lengths longer than ~ 70 bases, because longer strands require higher levels of purifica-
tion and a different, more expensive synthesis architecture (e.g., IDT Ultramers™ [4]). In
contrast, bacteriophage DNA is typically on the order of kilobases in length and, impor-
tantly, single-stranded. Second, the cost to produce natural DNA biologically is far lower
than that of producing custom DNA synthetically. M13mp18 plasmid can be easily cultured
and harvested using minimal equipment, in contrast to custom oligonucleotide that require
specialized synthesizers. Special synthesis architecture and additional purification steps are
often needed to produce a similar yield compared to shorter oligonucleotides, adding to both
the time and financial cost of production. At time of writing, M13 plasmid can be commer-
cially purchased at less than $5 for 1 ug at leading suppliers, whereas a typical oligonucleotide
sequence of 200 nt costs around $40 per 1 nmole. Further, recent technology developed for
DNA origami can produce both short single stranded staples and the long M13 to achieve
production costs of around $0.025 per pg of folded DNA origami [I50]. The same technology
may be potentially applicable to SIMDI||DNA, with instruction strands synthesized in the

same manner as the staple strands for origami.

SIMDI||DNA can potentially revolutionize DNA storage architecture for future ap-
plications. Given the current challenges in attaining high-quality, large-scale de novo long
custom strand synthesis [146, [117] and the urgent, growing need for archival data stor-

age worldwide, SIMD||DNA presents an intermediate solution that facilitates DNA storage
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for practical settings. In a longer-term context, SIMD||DNA could remain relevant as an
interface between DNA computation modules that process molecular inputs and a semi-
permanent record of the output of those computations. This can both scale up strand

¢

displacement-based DNA nanotechnology while adding a “wet” sensor component to other-
wise “cold” data storage. Towards this end, one could for instance envision a database of
personal medical records that is collected through molecular detection programs taking daily

samples from the patient as input and updating corresponding registers for later readout.

4.4 Materials and Methods

*DNA oligonucleotides DNA oligonucleotides were synthesized by Integrated DNA
Technologies (IDT). The bottom strands were ordered as PAGE purified Ultramer DNA
Oligonucleotides. The unlabeled oligonucleotides for 4-bit registers were ordered PAGE
purified. The fluorophore or phosphate labeled oligonucleotides were ordered HPLC purified.
M13mp18 single-stranded DNA plasmid was purchased from NEB (# N4040S).

Register preparation

Anneal register The bottom strand and all the top strands were mixed and then annealed
with 5% excess of top strands. The buffer for the annealing process was TE/Na®™ (1 M)
buffer (0.04 M Tris, 1 mM EDTA, 1 M Na™). The annealing process was performed in a
PCR thermocycler: DNA strands were incubated at 95 °C for 5 minutes and then slowly
cooled down with rate 0.1 °C/s to 20 °C°C.

Label register to magnetic beads
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The “Dynabeads MyOne Streptavidin C1” magnetic beads were purchased from Invitrogen
(# 65001). The SuperMag Multitube Separator was purchased from Ocean NanoTech (#
MMS-1.5-8) To resuspend the beads, they were first vortexed for 30 sec. Then 5 uL beads
were transferred to a tube and washed twice with the TE/Nat (1 M) buffer. The washed
beads were incubated with the annealed register (25 uLi at concentration 1 M) on a rotator
for 25 min. The beads were then washed twice by the washing buffer TE/Na™ (0.5 M) buffer
(0.04 M Tris, 1 mM EDTA, 0.5 M Na*t, 0.01% Tween 20) to remove the excess register.
Finally we suspended the bead with 25 ul. washing buffer. The register concentration was

approximately 400 nM, estimated based on bead capacity.

Computation experiments

For each computation experiment, 5 pl labelled registers were transferred from the
above stock and mixed with other instruction strands, diluting to 25 plb with approximate
concentration 80 nM. The concentrations for the strands in each instruction are: 3 uM for
instruction 1, 0.5 gM for instruction 2, 0.5 uM for instruction 3, 3 uM for instruction 4,
1 puM for instruction 5, 0.5 uM for instruction 6, 0.5 uM for instruction 7. The reaction
temperature for instruction 1 varied from 25 °C to 40 °C. The reaction temperature for all
other instructions was 25 °C. After incubating for 10 min, the magnetic beads were washed
twice by the washing buffer. The 96-well super ring magnet separator plate (SKU:T480),

purchased from Permagen was used for elution.
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Post-computation processing

Add adaptor strand

The adaptor strand (0.5 pM) located at the rightmost side for sequencing purposes was
mixed with registers and incubated for 10 min. The beads were then washed twice by 1x
T4 ligase buffer to remove excess adaptor strand. The 1x T4 ligase buffer was prepared by
diluting the 10x T4 ligase buffer purchased from NEB (# B0202S) and mixing with Tween
20 to reach 0.01%.

Ligation
400 units of T4 ligase, purchased from NEB (# M0202S) were incubated with the register

at 25 °C for 10 min. The product was washed twice with the above ligase buffer.

Displacing bead
The displacement strand (40 nM) was mixed with the ligated product at 25 °C for 10 min.

The supernatant was transferred to a new tube and inactivated by heat for 10 min at 65 °C.

Library preparation

Prior to amplification, the displaced product was quantified by qPCR with the LightCy-
cler96 instrument (Roche). Reaction mixtures contained 2.5 nM of the displaced product,
500 nM each of forward and reverse PCR primers containing NGS adaptors and unique
barcodes, 400 uM dNTP, 1x EvaGreen intercalating dye (Biotium #31000), 0.4 U/ul Q5
DNA polymerase (NEB #MO0491S), 1x Q5 Reaction Buffer (NEB). qPCR was performed
on the samples using the following protocol: initial melting at 98 °C for 3 minutes, followed
by 30 cycles of amplification with melting at 98 °C for 30 sec, annealing at 67 °C for 30 sec,

and extension at 72 °C for 30 sec (measurement taken), followed by a final extension at
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72 °C for 3 minutes (measurement taken). Once the C, of each sample was determined,
PCR was repeated using the same thermocycling protocol in a thermocycler with the same
concentrations, barcoded primers, and protocol as described for qPCR, except EvaGreen dye
was replaced with nuclease-free water and the number of cycles was set to C, + 5 for each
sample to minimize the amplification of side products. After PCR, equivalent amounts of
each sample were pooled together and gel purified for the expected size after running on a
1.8% NuSieve GTG agarose gel (Lonza #50081) using a QIAquick PCR & Gel Cleanup Kit
(Qiagen #28506) as per manufacturer’s instructions for gel purification with the following
exceptions: gel fragments were incubated in Buffer QG for at least 20 minutes at 60 °C
(instead of 10 minutes at 50 °C), and the column containing product was washed 3 times
using Buffer PE (instead of once). The final samples were eluted in nuclease-free water and

diluted to a concentration of 5 ng/ul as measured by Nanodrop.

Next-generation sequencing

Sample libraries were sequenced for 2x261 cycles using Illumina MiSeq 2x250 paired end
reagent kits (v2). Because SIMD products exhibit very low base diversity (i.e. strands
are very likely to have the same base composition at any given position within the target
sequencing range), it is necessary to boost base diversity to avoid downstream analysis issues.
We added a genomic DNA sample library (approximately 50% of all reads) on any runs in

which SIMD products accounted for more than 30% of all reads.

Sanger sequencing data analysis

We included sequenced library prepped, single data computation products using both

forward and reverse primers to gain confidence on the base call results and to maximize the
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portion of the computation product with high quality base calls. Sanger sequencing traces
were mapped to the expected SIMD product sequence using the ”Map to Reference” feature
in Geneious 2020.0.5. We determined the computation results using the composition of the
base call at the nucleotide positions of interest. Although Sanger sequencing is generally used
for discrete base calls (i.e. “A/T/C/G”), mixed populations can be detected when a position
has more than one visible nucleotide. Because we expected single data SIMD products to
have a mix of two possible nucleotides at each mismatch position, we interpreted the height
of base call peaks in the raw trace to be representative of the relative proportions of each

base in that population.

Next-generation sequencing data analysis

Next-generation sequencing was performed with the Illumina MiSeq V2 paired-end
platform with 2x261 cycles. All data analysis was performed using Python. Each register
sequence contains 4 cells, each of which contains a single nucleotide position the determines
the bit value for that cell, or the “variable nucleotide position”. In contrast, the sequences
between consecutive variable nucleotide positions are expected to be constant regions, as no
mutations are expected in these regions other than those arising from synthesis, PCR, or
sequencing errors. An initial filter was applied to the raw reads such that reads with at least
3 consecutive constant regions, each with a maximum of 1 mutation (indel or substitution),
were considered viable for analysis. If one read in a paired set of reads satisfied the criteria,
its partner reads would also be included regardless of whether it passed the filter. Viable
reads were then matched to its sample and initial value by identifying its barcodes. Reads

with sample barcodes that contained no more than 2 mutations to the expected barcode
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and that contained no more than 1 mutation in the register (i.e. initial value) barcode were

included in the final analysis.

To read out the results of SIMD computation, each read in a qualified read pair was
locally aligned to each expected cell sequences using pairwise2 from Biopython with match,
mismatch, gap opening, and gap extending scores of 1, -0.5, -0.5, and -0.5, respectively. If
the aligned nucleotide at a variable nucleotide position neither matched the original sequence
nor was “G” in the forward read or “C” in the reverse read, as any SIMD-related sequences
changes would result in an “N” — “G” mutation in the forward strand, the corresponding
digit would be marked as undefined for that read. Finally, for each of the four digits, the
read in the pair with the greater read quality score at the variable nucleotide was used to

call the bit.
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Figure 4.1: Overview of SIMD||DNA.

(A) Computation in traditional DNA storage paradigm relies on outsourcing computation processes
to classical computer with additional required steps of sequencing and synthesis. The SIMD||/DNA
paradigm allows in-memory computation performed through DNA strand displacement reactions.
(B) Analog to the single instruction multiple data (SIMD) computation in classical computer
which enables processing multiple data by one single instruction, the SIMD||DNA paradigm can
also perform parallel computation on multiple registers simultaneously. Each DNA register is a
multi-stranded complex. Different information is encoded in the pattern of nicks and exposed
single-stranded regions in the register. Registers are attached to magnetic beads (blue). At each
instruction step, a set of instruction strands is added to the solution to react with all registers
in parallel. Next, waste species (i.e. unreacted instruction strands and displaced reaction prod-
ucts) are washed away. After a series of sequeﬁt(i)al reaction and washing steps, the information
stored on the registers is updated. (C) The notations for SIMD||DNA. Domains are represented by
square boxes. We indicate complementarity of instruction strands to register domains by vertical
alignment. If a domain label is given explicitly (e.g. a and a*), the domain is orthogonal to the
other vertically aligned domains A strand can be described by listing the constituent domains in a
bracket <> from 5’-end to 3’-end. Strands with solid lines are complementary to the corresponding
domains in the bottom strand. Strands with dashed lines are complementary to the corresponding

domains in the top strand. A dashed instruction strand indicates the domains in the instruction
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Figure 4.2: Binary counting program on naturally-occurring sequences.

(A) Molecular program implementing addition by 1 of a binary string on an example register. The
top register shows the initial state of each cell. After 7 instructions, the register updates to the
state shown at the bottom. Strand colors have three information categories: state 1 (purple),
state 0 (pink), intermediates (other colors). Solikl boxes show the instruction strands and the state
of the register before the strands are applied. Dashed boxes explain the logical operation of the
instructions. The overhang domains a and b are orthogonal to their vertically aligned domains.
(B) (left) Locations of registers on the M13mp18 phagemid. (right) Mismatches (labeled as yellow
dot) are introduced in top strands representing state 1. (C) Single data binary counting on register
M13.8. For each initial value, the distribution of the output values are represented in the heat-map
matrix. Lower bar plot shows an example of the data in one row of the heat map: the distribution
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Figure 4.3: Sanger assessment of M13 Register addresses for 0010 and 0111.

Mismatches to the native sequence as determined by Sanger are marked by a yellow circle. Compu-
tation products were sequenced both in forward and in reverse to maximize high-quality coverage
of product and to improve confidence in base calls. Fwd = Forward read, Rev = Reverse read.

Digits at which two bases show peaks of similar height are marked with a“?”.
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Figure 4.4: SIMD||DNA single data binary counting program using M13 sub-
registers 3 and 8.
(A) Independent assembly of initial values on M13 sub-register 8. (B) Independent assembly of

initial values on M13 sub-register 3 (left) and single data binary counting (right).
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Figure 4.5: Sanger assessment of different instruction temperatures for binary
counting on M13 sub-registers 7, 8, and 9.

Mismatches to the native sequence as determined by Sanger are marked by a yellow circle. Compu-
tation products were sequenced both in forward and in reverse to maximize high-quality coverage
of product and to improve confidence in base calls. Fwd = Forward read, Rev = Reverse read.

Digits at which two bases show peaks of similar height are marked with a*“?”.
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Figure 4.6: Multiple data readout of independently assembled initial values on

M13 sub-register 8.
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Figure 4.7: Multiple data binary counting on M13 sub-registers 7 and 9.
(A) Initial values were independently assembled on M13 sub-register 7 and mixed together (left),
then binary counting was performed on the register. (B) Initial values were independently assembled

on M13 sub-register 9 and mixed together (left), then binary counting was performed on the register.
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Figure 4.8: Assembly of initial values on M13 sub-registers 7 and 9 on the same

M13 plasmids.
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Figure 4.9: Rule 110 computation with chemically synthesized DNA.

(A) Post-computation process for the Rule 110 program with chemically synthesized DNA. After
computation, a set of “seal” strands are added to the register to fill in the gap for cells representing
bit 1 for the following ligation step. (B) Multiple data Rule 110 computation on 16 registers with
unique initial values. The correct output value is indicated by a white and black border; values

that appear in > 25% of all reads for a given sample are marked by text.
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Figure 4.10: Program implementation of one timestep of Rule 110 shown on an
example register.

The top register shows the initial state of each cell. After 6 instructions, the register updates to the
state shown at the bottom. Strand colors have three information categories: state 1 (dark blue),
state 0 (light blue), intermediates (other colors)l. 1§)011d boxes show the instruction strands and the
state of the register before the strands are applied. Dashed boxes explain the logical meaning of

the instructions. The overhang domains a and b are orthogonal to their vertically aligned domains.
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Figure 4.12: Rule 110 computation on M13 sub-register 1.
Readout of combined initial values (independently assembled) is on the left; multiple data compu-
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Figure 4.13: Random access with chemically synthesized DNA.
Sequential random access for the Rule 110 algorithm. Following Rule 110 computation, registers

with initial value “0011” were accessed first (top), “1001” second (middle), and all remaining values

last (bottom).
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Figure 4.14: Parallel random access for the binary counting algorithm.

Computation is performed independently on multiple samples, after which a unique initial value is
accessed from each sample. 14 initial values (0000 to 1101) were accessed in parallel following one
round of binary counting. In parts B and D the correct output value is indicated by a white and

black border; values that appear in >25% of all reads for a given sample are marked by text.
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Figure 4.15: Data erasure by random access.

Red arrow indicates barcoded register that was previously accessed.
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Figure 4.16: Multiple rounds of sequential computation with chemically

sized DNA.

(A) Sequential computation of the Rule 110 program. Results are normalized to the total read
count for each sample. Reads with one or more indeterminate digits were excluded. Lower pan-
els show the distribution of outputs values for initial values “0001” and “1101”. (B) Sequential
computation of the binary counting program. In both the lower panels of (A) and (B), the correct

value is indicated by a white and black border; values that were observed in > 25% of all reads are

labeled.
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Figure 4.17: Quantifying the loss of SIMD products following washing and com-
putation steps.

(A) SIMD products from the Rule 110 algorithm were quantified by both qPCR (top) and elec-
trophoresis (bottom). The calculated percent yield is shown in text, as well as the C, and con-
centration as determined by qPCR and the BioAnalyzer, respectively. (B) Yield quantified by
qPCR for Rule 110 sequential computation. In combination with the results from (A), each round
of computation resulted in about 60% to 75% product loss. The value in the parentheses is the
percent of product detected relative to the control (aka assembly) as described in (A). Note that
the concentration of displacement strands and washing procedures are slightly different than in
(A), which could account for the discrepancy in the yield from control/assembly to the first round

of computation.
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We made the following assumptions for the calculation: (1) Each round of computation except the

final round has a yield of 56.25% (since products are only washed and not ligated). (2) The final

round of computation has a yield of 38.25% due to ligation. (3) The reaction volume is 25 pL and

the starting total register concentration is 80 nM (i.e. starting with 1.2e412 strands or 2 pmoles).

(4) PCR is capable of amplifying as few as 10 copies of each register in the reaction volume. (5)

There must be at least 1 copy of each unique register to determine data.
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Chapter 5

Reading out in vitro transcription networks with

high-throughput sequencing]

Abstract. Synthetic in vitro transcription networks have recapitulated complex
and dynamic behaviors found in biological systems, such as oscillations and bistable
switching, with minimal machinery. These networks have both elucidated princi-
ples for building artificial biochemical networks and demonstrated the computing
capabilities of in vitro transcription regulatory elements. Here, we expand on the
scalability and toolkit of transcription networks by modifying our previous single-
stranded transcription switch and developing an associated protocol to read all
signals, including intermediate signals, using next-generation sequencing. Addition-
ally, we present a single-stranded transcription switch that activates upon binding

by a cognate signal strand.

IThis chapter includes original work by SSW. SSW received funding for the project from Andrew Elling-
ton. SSW would like to thank Shaunak Kar for helpful discussions.
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5.1 Introduction

Synthetic biology aims to create biochemical circuits to address a broad range of
applications from disease diagnostics to biosynthesis of precious compounds. At their core,
these circuits process chemical information, and engineered genetic circuits have been demon-
strated to achieve computational tasks from simple boolean logic to molecular pattern recog-
nition, as well as dynamic behaviors. Key challenges towards this goal are the modularity
and predictability of circuit components. Nucleic acids adhere to predictable Watson-Crick
base pairing rules [161, [62] and well-studied kinetics [225] [124], making DNA and RNA
programmable substrates that can be used to implement minimal synthetic biochemical net-
works. This has enabled DNA nanotechnology for molecular detection [118], computation

[152, 153, [34], and nanoscale actuation [172, 213] to be built de novo.

Despite their modularity and programmability, nucleic acid-based circuits suffer from
issues of scalability and broad use. First, if the goal is to interface with biological systems,
a protein, mRNA or other biologically potent output must be produced or unlocked by the
computation. However, conventional DNA computing solely involves DNA oligonucleotides
and their hybridization reactions, making it difficult to actuate biological responses. To
address this, previous works have explored the regulation of transcription [110], 167, B8] and
translation [81) [80] through strand displacement reactions that result in the synthesis of new
RNA strands in vitro or a phenotypic response in vivo. Second, most nucleic acid circuits in-
volve multi-stranded complexes, which require time-consuming stoichiometric annealing and
purification prior to use. This may become impractical as the number of total components
scales. Some transcriptional circuits have addressed this issue by using single-stranded switch

elements [104] or inserting self-cleaving ribozymes [168], both of which ensure a one-to-one
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assembly of components. Third, fluorescence is typically used for immediate, real-time read-
out. However, this mode of readout has limited ability for multiplexed output. Stochastic
photoswitching presents one solution to this challenge [I03], while alternative readout meth-
ods such as sequencing (as presented in Chapter 3) could enable unlimited monitoring of all

components involved.

Here we adapted our previously reported single-stranded transcription switch for
quantitative, multiplexed readout using next-generation sequencing (NGS). We updated the
transcribed RNA signals such that all products included in a network may be read and
identified using RNA-Seq. To expand the toolkit of transcription switch elements, we ad-
ditionally present a single-stranded transcription switch that is activated by hybridization
with a cognate DNA signal. Our results present alternatives to conventions used in DNA

computing that could improve the scalability of rationally designed nucleic acid circuits.

5.2 Results
5.2.1 High-throughput readout of in vitro transcription networks

The transcription hairpin is a hemi-duplex hairpin that acts as a transcription tem-
plate for T7 RNA polymerase (T7 RNAP) conditional on the state of its promoter sequence.
In the active state, it consists of a double-stranded T7 promoter sequence region, a single-
stranded DNA loop, and a single-stranded templating region [104]. In the inactive state, an
upstream signal strand binds to the loop and partially binds to the T7 promoter sequence,
thereby separating the top and bottom strands of the promoter and prohibiting initiation by
T7 RNAP. The hairpin switch is responsive to both single-stranded DNA and RNA signals
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that include a complementary sequence to the hairpin loop region (i.e. cognate signals). It
can implement NOT and NAND logic on inputs and transcribe an RNA signal as output. We
modified our previously reported hairpin switches to be compatible with sequencing readout
by extending the template region to include a signal-specific barcode [85] and a common
reverse transcription priming site (Figure ) Following transcription, DNA templates
and input signals are removed from the samples using DNase I, the treated samples are
reverse transcribed, and signals are read out with qPCR (for singleplex signals) or PCR
amplified and read out with NGS (for multiplex signals) (Figure [5.1B). This process can
be scaled up through sample-specific barcodes that are introduced with PCR primers. To
test these modifications, we designed several sequencing-compatible switches with different
loop (input) and transcribed (output) signal sequences using NUPACK [218]. We confirmed
transcription of signal RNAs at the expected size in the absence of the inhibiting signal by
PAGE (Figure [5.2).

The transcription of the modified switch can be similarly observed using NGS, qPCR,
or fluorescence. We designed a hairpin switch (H2) encoding the Spinach RNA aptamer [149]
as well as an upstream hairpin (H1) that produces the cognate inhibiting RNA signal. The
transcription activity of H2 in the absence or presence of upstream DNA signal (Inh2) or H1
was measured as the fluorescence signal. In the presence of Inh2 at 2X concentration, the
transcription activity of H2 ws at background, and in the presence of H1 at 2X concentration,
transcription was reduced by about 60% (Figure ) In parallel, we designed a sequencing-
compatible version of the hairpin and performed qPCR quantification with the C, as a
readout of relative concentrations. In the presence of the upstream inhibitor signal (OFF

state), transcription activity was decreased to 37% of the ON state (Figure[5.3B). Finally, we
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used NGS to measure the output, with the read count as the signal. We observed a graded
response over a range of Inh2 concentrations. The maximally inhibited case (i.e. 400 nM of
inhibitor) showed about 30% activity as compared to the uninhibited activity (Figure[5.3C).
One reason for the diminished inhibition is that the concentration of templates in these assays
exceeded the saturation concentration for T7 RNAP. Operating at a higher concentration
of T7 RNAP should result in an improved response that is more responsive to changes in

active template concentration.

NGS readout allows the signals of all switches in a network to be read out at once.
We constructed a network of three inhibitors in series and observed their individual activities
in response to increasing concentrations of Inh1l (Figure p.4JA). As expected, the activity of
the first switch (H1) showed the largest dynamic range. The second switch (H2) showed
the expected relative activities for up to 200 nM of Inh1l. Beyond 200 nM, however, H2’s
inhibition response was no longer observed; this was explained by the saturation of H1 to
input concentrations above 300 nM. We additionally used NGS to observe the transcription
activities of two switches in series in response to varying switch concentrations (Figure[5.4B).
As the signal for H1 (Inh2) increases with increasing concentrations of H1, inhibition of the
downstream H2 switch saturates at around 50%. Multiplexed signal readout shows the

individual response of components in a network for more transparent troubleshooting.

5.2.2 Towards a single-stranded #n vitro transcription activating promoter switch

In an effort to expand the capabilities and scale of transcription-based networks, we
sought to develop a single-stranded transcription activator analogous to the hairpin switch

inhibitor. Multi-stranded conditionally-active transcription gates have been previously pre-
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sented [I10] that require stoichiometric annealing and PAGE purification prior to use. In
our design, we aimed to satisfy the following requirements: switches must be single-stranded
DNA, contain both the sense and antisense T7 promoter sequences, and respond only to
cognate signals with a complementary sequence. From the first two requirements, it follows
that in the absence of an activating signal, the activator is capable of forming an active
double-stranded promoter and subsequently may leak signal. The inactive conformation
(i.e. single-stranded promoter) must be more energetically favored in order to compete with
the active conformation. To this end, we created a hemi-duplex activator that, in the inac-
tive state, adopts multiple degenerate states that are at equilibrium with one another. The
activator contains a single-stranded loop that disrupts the bottom strand of the promoter
and “slides” between a range of positions. The range of this sliding loop is bounded by
its sequence complementarity with the promoter. In the presence of an activating signal,
hybridization between the signal strand and the activator stabilizes the active conformation,

producing a stable double-stranded promoter region (Figure )

To determine the downstream boundary of the sliding loop, we tested positions where
the insertion of a single-stranded loop would disrupt transcription activity. We placed a 17
nt polyT loop at several locations between -17 and -7 (relative to initiation start site) in
the templating strand of a double-stranded T7 promoter. This promoter was upstream
of a malachite green RNA aptamer sequence and part of an otherwise linear transcription
template. We avoided positions downstream of -5 because insertion of a loop here would
not disrupt the specificity region [30] and could potentially still allow T7 RNAP to bind.
This may lead to stalled enzymes in the OFF state and a delayed response to signal. On

the other hand, we did not want to limit the sliding loop to positions further upstream (e.g.
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upstream of -15) because a large fraction of switches in the inactive state would contain
double-stranded promoters. Fluorescence transcription assay results showed that positions
-13, -10, and -7 had similar decreases in activity, with the largest decrease at position -7
with a 3-fold reduction from a linear promoter (Figure [5.4B). We therefore proceeded with

-7 as the downstream boundary.

We used NUPACK for the sequence design of the activators. Because the ON state
involves a pseudoknot base pairing configuration, which is not supported by NUPACK, we
separated the activator into two strands for the purposes of design. We then tested two
versions of input strands: one with a complementary partial spacer sequence and another
without (Figure ) We included a malachite green aptamer sequence in the templating
region for fluorescence readout. In the presence of the signal strand, transcription activity
was about 60% and 50% relative to a hemi-duplex hairpin template control for input versions
1 and 2, respectively (Figure ) In the presence of non-cognate or “scrambled” inputs
(i.e. non-matching stem region), activity was reduced by 2.2-fold and 13.9-fold relative to

the cognate input for designs 1 and 2, respectively.

5.3 Discussion

The observation of similar patterns of inhibition across different modes of readout
shows that alternatives to fluorescence can be used to read transcriptional network output.
Several remaining issues should be addressed to improve the consistency, strength of inhibi-
tion response, and scalability. First, the total concentration of switches in a network should

be lower than the saturating concentration for T7 RNAP, and the concentration ratio be-
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tween the total switch and enzyme should be kept constant across assays. This is because T7
RNAP transcription follows Michaelis-Menten enzyme kinetics, which dictates that rate of
transcription is dependent on the concentration of available substrate (i.e. double-stranded
promoters). This can be done by first determining the saturating concentration of T7 RNAP
(by titrating a constant concentration of T7 RNAP with different concentrations of ON state
switches) and later by adding an orthogonal “normalization” switch to networks to main-
tain the total switch concentration. Introducing an additional layer of barcoding at the
reverse transcription step with barcoded primers could improve both consistency and scal-
ability, thus ensuring that concentrations of signals are subject to the same fluctuations in

the following processing steps.

Given the response of the hairpin activator switch to DNA signals, RNA signals
should be tested to assess the utility of this switch design for layered transcription networks.
Additionally, as with inhibitor switches, it is likely possible to adapt signals for multiplexed
readout using NGS. Ultimately, the activation response should be improved prior to combin-
ing activator switches with inhibitor switches, since the current activator design has about
60% activity relative to ON state inhibitors. Increased activation would also enable deep
networks to lose less signal over layers. Some adjustments to the activator switch design may
potentially improve the signal-to-noise ratio. Reducing the length of the conserved region
would destabilize binding overall and cause signal binding to become more dependent on
sequence complementarity to the activator, thereby weakening partial stabilization by non-
cognate signals. Altering the upstream “GC” clamp either to “AT” or an AT-rich sequence
may improve transcription, as previous studies have reported increased transcription activity

for an extended dsDNA region upstream of the promoter [I0], particularly with an AT-rich
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sequence [I18§].

5.4 Materials and Methods

Oligonucleotides and reagents. All oligonucleotides were purchased as custom
oligonucleotides from IDT. Unless otherwise noted, all enzymes and reaction buffers were

purchased from New England Biolabs and all chemical reagents were purchased from Sigma

Aldrich.

Hairpin switch in vitro transcription for sequencing readout. Prior to in vitro
transcription, templates (linear and hairpin) were individually annealed to a final solution of
4 uM in 1X T7 Annealing Buffer (10 mM Tris-HCI pH 8.0, 100 mM NaCl) with the following
heating protocol: 5 minutes at 95°C, ramp down at 0.1°C/s to 25°C, 5 minutes at 25°C,
hold at 4°C until use. Unless otherwise noted in figures, transcription reactions were 20 ul
each and contained a 200 nM of each template (linear or hairpin), 10 U/ul (about 200 nM)
of T7 RNAP, 5 mM of each NTP, 5 mM DTT, 1X T7 Buffer (NEB), and any concentration
of DNA input signal specified in the figures. Transcription reactions were incubated at 37°C

for 4 hours on a standard thermocycler.

Sample preparation for sequencing. Following transcription, reactions were
treated with DNase I to remove templates in the following reaction mix: 12 ul of the tran-
scription reaction, 4 units of DNase I (NEB), 1X DNase I Buffer (NEB), and nuclease-free
water added to a final volume of 30 ul. Reactions were incubated at 37°C for 30 minutes, then
EDTA solution was added to each reaction to a final concentration of 5 mM, and the reac-

tions were incubated for 5 minutes at 75°C to inactivate enzymes. Reverse transcription was

136



then performed with the following reaction mix for each reaction: 5 ul of the DNase-treated
RNA product, 500 nM of RT primer, 15 units AMV RT, 2 units murine RNase Inhibitor, 1
mM each ANTP (ThermoFisher), 2 mM MgCl,, 1X AMV RT buffer, and nuclease-free water
added to a final volume of 20 ul. Reactions were incubated for 1 hour at 42°C, followed by

5 minutes at 80°C for inactivation and stored at -20°C until use.

To prepare samples for NGS, cDNA samples were pooled by combining equal amounts
of each sample across barcodes. The pooled samples were cleaned using a QIAquick PCR
Purification Kit (Qiagen, 28104) according to manufacture’s instructions with these excep-
tions: the sample-bound column was washed with PE buffer 3X and ¢cDNA was eluted in
30 pl nuclease-free water. Pooled samples were then PCR-amplified with the following mix:
1.5 pl of cleaned pooled cDNA, 500 nM each of forward and reverse primers containing
indexed NGS adaptors, 0.4 U Q5 DNA polymerase, 400 nM of each dNTP, 1X Q5 Buffer,
and nuclease-free water added to a final volume of 20 ul. The sample was heated with the
protocol: 3 minutes initial melting at 98°C, 16 cycles of amplification - 30 seconds of melting
at 98°C, 30 seconds of annealing at 65°C, and 30 seconds of extension at 72°C - followed
by a 3 minute final extension at 72°C and was stored at 4°C until use. Amplified samples
were cleaned again according to manufacturer’s instructions using the QIAquick kit, with

the exceptions listed above, and stored at -20°C until sequencing.

Sequencing and analysis. Samples were sequenced with either on the Illumina
MiSeq platform at the University of Texas Genome Sequencing and Analysis Facility using
the MiSeq v2 500-cycle kit (MS-102-2003) or on the iSeq 100 platform using the iSeq 100 il
Reagent v2 300-cycle kit (20031371). Because the samples contained large regions of identical

sequences and therefore contain low base diversity, high base diversity samples (e.g. Illumina
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PhiX, NEB HeLa genomic DNA) was added to form a high proportion (> 50%) of each run.
After NGS, reads were sorted into their respective samples by the i5 and i7 indices of the
read. Fach read was identified as a transcribed signal using its signal-specific barcode. Up to
1 mismatch was tolerated in this barcode for identification; reads without a barcode match

were removed from analysis. All analyses were performed in Python.

Fluorescence-based in vitro transcription assays. In fluorescence assays for
hairpin inhibitors, a hairpin switch templating the Spinach aptamer [149] was used. For
the spinach aptamer transcription assay, reaction mixes were as previously described for
sequencing readout with the following exceptions: DFHBI solution in DMSO was added to
a final concentration of 50uM, and each reaction contained 5 U/ul (~100 nM) of T7 RNAP
instead of 10 U/ul (~200 nM). Following transcription, 18 ul of each reaction was transferred
to a Nunc black flat bottom plate 384-well and the end point was measured with a Tecan

Infinite M200 plate reader at 469 nm excitation and 501 nm emission.

For assays with hairpin activators, transcription templates included the malachite
green aptamer [I2]. The composition of the transcription mix was as previously described
for sequencing readout with the following exceptions: Malachite Green dye solution in water
was added to a final concentration of 25 M, and each reaction contained 5 U/ul ( 100 nM)
of T7 RNAP instead of 10 U/ul (~200 nM). Kinetic measurements at 630 nm excitation
and 664 nm emission were collected every 3 minutes over the transcription period and the

reported signal is the average of the final 5 measurements for each sample.

qPCR analysis. Samples were reverse transcribed but not pooled together. cDNA
samples were similarly cleaned using a QIAquick kit. The qPCR heating protocol was the

same as that for PCR with the exception that amplification was carried out in a LightCy-
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Figure 5.1: Next-generation sequencing-compatible hairpin switch.
A. Sequence design (top) and circuit diagram abstraction (bottom). Gray circles represent single-
stranded signal and colored circles represent hairpin switches. Solid outlines represent DNA and

dashed outlines represent RNA. B. Protocol for reading transcriptional output.

cler96 qPCR machine (Roche) and measurements were taken at the initial melting step, each
extension step, and the final extension step. The qPCR mix was the same as the PCR mix
with the addition of a final concentration of 1X EvaGreen dye (#31000). C, of samples was

determined using the LightCycler96 software (Roche).

139



| H11 | H1.2 | H1.3 | — @ — I;:\ ]
1000*- e ; ~ i, ag—

i = 4 — —
—

500 ———
_ ' Inh ‘
200 & Mo HP HP no HP HP DNA HP . HP . @ ‘?2'
T7 ON OFF T7 ON OFF only ON OFF,
' Inh '
= ®—©@-&
:i;- . t--

50 =~

— - w= € DNA inhibitor (32 nts)

10% Denaturing
PAGE (TBE-Urea)

Figure 5.2: Transcribed products of sequencing-compatible hairpin switches.

140



AL @-@-w B c
© - @~
. —> ilnk2i — . —> spin — . —> {lm2} —> RT-gPCR

0 100 200 300 400nM

Spinach transcribed (469/501) Quantification by RT-qPCR
8
Inh3 transcription by 200 nM H2 (NGS)
35 500 7 250000
<
3 6
% 400 200000
El
=) 5
3 300 o
2 Q‘ 4 § 150000
< 3
200

3 3 € 100000 !
2 100 2
g 50000
E] 1
=, o o

0 o

H2 (100nM) DNA Inh2 (200nM) H1 (200nM) HL Inh1 (200 nM) o 100 200 300 400
(ON) + + (500 nM) + Inh2 added (nM)
(ON)

H2 (100nM) H2 (100nM) H1 (500 nM)
(OFF) (OFF) (OFF)
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Figure 5.4: Multiplexed signal readout with NGS.

A. Network response as a function of DNA input concentration. DNA input inhibits the HI,
which produces RNA signals that inhibit H2, etc. B. Network response as a function of switch
concentration. Inhibition is caused by RNA transcribed by switch H1.
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Figure 5.5: A single-stranded transcription activator switch.

A. Mechanism of transcription activation. In the OFF state, the activator exists in a mixture of

degenerate states with the loop sliding between different positions. B. Disruption of transcription

activity by insertion of a polyT loop in the templating strand. C. Sequence designs and activation

complex for two versions of inputs. D. Activation fluorescence assay.
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Appendix A

Recovery of information stored in modified DNA with

an evolved polymerasd]]

Abstract. DNA is increasingly being explored as an alternative medium for digital
information storage, but the potential information loss from degradation and as-
sociated issues with error during reading challenge its wide-scale implementation.
To address this, we propose an atomic-scale encoding standard for DNA, where
information is encoded in degradation-resistant analogues of natural nucleic acids
(xNAs). To better enable this approach, we used directed evolution to create a
polymerase capable of transforming 2’-O-methyl templates into double-stranded
DNA. Starting from a thermophilic, error-correcting reverse transcriptase, RTX,
we evolved an enzyme (RTX-Ome v6) that relies on a fully functional proofreading
domain to correct mismatches on DNA, RNA, and 2’-O-methyl templates. In addi-

tion, we implemented a downstream analysis strategy that accommodates deletions

! This appendix is adapted from a manuscript by Shroff R, Ellefson JW, Wang SS, Boulgakov AA, Hughes
RA, and Ellington A.D (2020). JE devised the project and carried out protein evolution experiments and
assays. RS analyzed the NGS results and sequence decoding. AAB designed and performed the encoding
scheme using DNA Fountain. RAH synthesized the modified and unmodified oligonucleotide pools. RS, JE,
SSW, and AE wrote the manuscript with feedback from all authors.
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that arise during phosphoramidite synthesis, the most common type of synthesis
error. By coupling and integrating new chemistries, enzymes, and algorithms, we

further enable the large-scale use of nucleic acids for information storage.

A.1 Introduction

Global data aggregation is expected to outstrip society’s storage capacity; by 2025,
163 zettabytes of data will be generated annually [I87]. Accommodating this growth strains
data centers with an unending battle of scalability. Where traditional electromechanical data
storage technologies exhibit defined obsolescence, sensitivity to temperature and humidity,
and significant energy maintenance cost, DNA data storage benefits from stability on the
order of thousands of years, robustness to a broad range of environmental conditions [I1],
and a theoretical information density of 455 exabytes per gram of DNA [39] (215 petabytes
per gram demonstrated experimentally [59]). Though the latency of information retrieval
from DNA prohibits its use in real-time access, it does provide an attractive solution for

large archival storage.

At present, molecular data storage is primarily developed using native DNA | in large
part because a wide range of enzyme tools are available to reliably read, write, and, to a
limited degree, edit information stored in DNA, while very few enzymes are known to be
capable of utilizing nucleic acid analogues to a similar degree. Storing data in chemically
modified oligonucleotides could not only expand the space of data archival technologies (for
instance, multiple independently addressable channels of data) but might also help resolve

roadblocks to the widespread use of DNA archives as a supplement to digital archives. These
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include data loss arising from sequencing (high-throughput sequencing has error rates be-
tween 0.1% and 0.01% [85]), synthesis (oligonucleotide synthesis has error rates of around
0.5%, but significant errors accumulate at lengths beyond 100 nucleotides [93]), and degra-
dation in the presence of contaminants. Efforts to combat such errors can be broadly catego-
rized into chemical approaches (e.g. improved phosphoramidite chemistry or template-free
enzymatic oligonucleotide synthesis), biochemical approaches (e.g. improved sequencing er-
ror rates, costs, and throughput) and algorithmic approaches (e.g. error-tolerant encoding
schemes). Most efforts currently center on algorithmic approaches, with both public and pri-

vate sectors exploring error-resistant or degradation-tolerant information encoding schemes

139, 59, [74], 77, 17, [138).

Biochemical innovations in the underlying nucleic acid storage “hardware” can com-
plement algorithmic developments by providing more robust information-storage substrates
and the corresponding enzymatic machinery for efficient reading and writing. We therefore
propose a new paradigm for long-term nucleic acid data storage that uses naturally nuclease-
resistant, chemically-modified nucleic acids. Critical to the goal of modified oligonucleotide
data storage is the ability to easily read the encoded information at scale via sequencing. To
this end, we have encoded information in highly stable 2’-O-methyl RNA, which is known to
resist degradation by several ribonucleases as well as deoxyribonucleases [115, 217, 42]. In
parallel evolved a polymerase with error-correcting capabilities that can read out the encoded
information. Additionally, we present a bioinformatic strategy to retrieve encoded messages
with multiple deletions arising from low synthesis fidelity. Overall, our results show the
viable and valuable co-development of nucleic acid, protein, and computational components

for improved DNA data storage.
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A.2 Results

A.2.1 Evolution and characterization of a polymerase that could read 2’-OMe

DNA

To develop an enzyme that was capable of reading 2’-O-methyl (2’-OMe) modified
templates, we built off of previous efforts to evolve a thermostable, error-correcting reverse
transcriptase enzyme (RTX), starting from an Archaeal family B DNA polymerase [57]. Pre-
viously, enzymes capable of reading 2’-O-methyl-modified templates have been engineered
from the family A DNA polymerase Taq [32, [169] or derived from recombinant sources [21];
however, high-fidelity, proofreading polymerases more suited to long-term information stor-
age have not previously been explored. RTX proved capable of accurately reverse transcrib-
ing RNA into DNA, but also showed minimal activity on 2-OMe RNA (Figure [A.5A). To
further encourage the adoption of 2’-OMe templates by RTX, we made modifications to the
emulsion-based selection scheme, reverse transcription compartmentalized self-replication
(RT-CSR) [69]. In this scheme, polymerase variants are expressed in bacteria, which are
subsequently ensconced within a water-in-oil emulsion mixture (Figure . Upon thermal
cycling, individual bacteria lyse, and individual polymerase variants gain access to primers
that allow amplification of their own genes. In the current instance, these primers contain
2’-OMe residues, which the polymerase must be able to read through in order to complete the
amplification of its own gene, which can then be carried into subsequent rounds of cloning,

expression, selection, and amplification.

Starting from RTX, error-prone PCR was used to generate diversity, and bacteria
expressing individual variants were emulsified with modified primers. The stringency of

selection was tuned by gradually increasing the number of challenge positions in primers
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over the course of evolution. For example, the challenge region initially contained a run
of 5x 2’-OMe nucleotides in each primer; this number was progressively increased through

the course of the selection until it reached 81 2’-OMe bases in the 18th and final round of

selection (Table [A.1)).

After the final round of selection the library as a whole was examined via next-
generation sequencing (NGS), revealing several predominant mutations (Figure , Ta-
ble . Near the template entry site, the E251K and Q242R mutations increase the net
positive charge and may provide tighter binding to the negatively charged backbone. The
G498A and G350V mutations increase hydrophobicity near the 2’ moiety at the +1/-1 po-
sitions. Mutations in the finger domain (I488L and K468N) may alter the overall fit of the
helix (which is now more A-form than B-form) to the polymerase, an outcome that was also

observed in the original selection for RTX.

Based on the distribution and predominance of the accumulated mutations, we ratio-
nally constructed a series of variants (Table ; mutations that were likely to inactivate
the proofreading domain (a common outcome of selections for polymerase activity) were ex-
cluded from the rational design. Six designed variants (but not the ancestral enzyme) proved
able to reverse transcribe a template with 44 sequential 2’-OMe bases. Of the six variants
constructed, one (RTX-Ome v6) exhibited the most robust capability to use O-methyl sub-
strates as templates, and was chosen for further analysis (Figure . Since DNA:OMe
duplexes are structurally closer to DNA:RNA than DNA:DNA duplexes, the similar exten-
sion profiles for the OMe and RNA templates matched our expectations and further support
the hypothesis that the mutations in RTX-Ome v6 improve its ability to utilize A-form he-

lices. This variant also surprisingly retained the ability to reverse transcribe RNA, perform
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PCR amplification, and proofread on DNA templates, making it a generally useful enzyme

for molecular biology applications.

A.2.2 Encoding and recovery of DNA files

In order to demonstrate the utility of RTX-Ome v6 in information storage appli-
cations, we sought to store and recover information in 2-OMe oligonucleotides with our
engineered enzymatic tool. We transformed a series of short text files into unmodified DNA
and a similar set of files into 2-OMe RNA (Figure [A.4JA) using a previously reported “DNA
Fountain” encoding scheme, which we chose based on its efficient encoding density, built-
in substitution error correction, and erasure correction [59]. In total, the unmodified and
modified files were encoded into 4000 and 2000 oligonucleotides, respectively, with only
the modified oligonucleotides containing a modulo 2000 seed to ease downstream recovery.
Oligonucleotide pools were individually synthesized on a 12k Customarray oligonucleotide
chip, with a 16-nucleotide seed region for positional identification, 64 nucleotides of data con-
taining payload, and 8 nucleotides containing a Reed-Solomon code. As redundancy is built
into the encoding scheme, our simulations suggested that we would require an average of
2784 4 /- 58 oligonucleotides to recover the unmodified files and 1245 + /- 46 oligonucleotides
for the modified files (Figure [A.0)).

In order to show that we could selectively recover the information encoded in modified
oligonucleotides, the unmodified DNA and modified DNA pools were mixed in a 1:20 ratio.
RT-PCR was then used to amplify the oligonucleotides and append appropriate adapters
for NGS. Beyond RTX-Ome v6, four additional polymerases (KOD, RTX, and a mix of

MMLV /Taq) were assayed for their ability to recover either unmodified or modified DNA
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(or both). RTX-Ome, along with the other three control polymerases, successfully amplified
the unmodified oligonucleotide sequences, leading to their full recovery (Figure )

A.2.3 Computational strategy for reading modified strands

Initially, following sequencing of our oligonucleotide libraries we discovered deletions
in virtually every sequencing read. Because deletions were systematic across all libraries,
we attribute these errors to oligonucleotide synthesis (Figure . While DNA decoding
schemes do have error-checking mechanisms (like the use of a Reed-Solomon code), these are
primarily suitable for correcting substitutions and do not generally correct for indels, despite

the fact that this may encompass the majority of oligonucleotide synthesis errors [85].

Because deletion errors during synthesis are common, especially when modified nu-
cleotides are utilized, we developed a reconstruction method to account for deletions in NGS
reads that expands on the DNA Fountain decoding scheme. Assuming that the deletions
appear randomly, redundant coverage can be used to reconstruct the original sequence via
sequence alignment. We created bins of similar oligonucleotides through sequence cluster-
ing and performed multiple sequence alignments on each bin to build consensus sequences
(Figure . If the length of the consensus sequence was less than the expected length for
the read, gaps were filled by inserting positions at which a non-gapped base occurred most
frequently and iterated to find a sequence that best matched the designed GC content, ho-
mopolymer stretch, and Reed-Solomon code. Reads that were more intact were given higher

weight in the consensus search.

Our strategy ultimately generated a consensus sequence for each bin of strands that

contains the data payload. We then used the DNA Fountain decoding mechanism to further
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translate these consensus sequences and the random seed, and thus to reconstruct the orig-
inal message. Fountain codes are inherently resilient to information loss, in that message
reconstruction can still occur with missing packets; however, this type of data is especially
sensitive to data corruption and information fidelity may be compromised. Thus, to fix
possible “corruption” in our sequences, we further modified the decoding program to better
accommodate potential, practical errors. Our solution was to give more weight to sets of
sequences that were able to quickly reach a consensus (in 20 iterations or fewer) and then
perform 1000 trials with different permutations of the other sequences as randomized sets. In
addition, we used the md5 checksum to decode the message. In cases where trials produced
different checksums (as was the case with KOD and RTX-Ome), the correct checksum was
observed most frequently and no other checksum appeared more than once. To show the
robustness of our decoding strategy, we repeated the method on a random sample subset
containing 10% of our reads and observed fully correct recovery. Overall, RTX-OMe was the

only one among the three tested Archaeal family B, error-correcting polymerases that was

able to correctly recover the 2-OMe-encoded files (Figure [A.4B).

A.3 Discussion

The storage of information in modified nucleic acid templates may eventually be a
generally viable option, if several obstacles are overcome. First, more polymerases that can
be readily adapted to a variety of nucleic acid analogues (xNAs) will likely prove key. In
addition to the proofreading enzyme RTX-OMe, the viral reverse transcriptase MMLV RT
is capable of reverse transcribing 2’-O-methyl RNA into DNA ([52]; Figure[A.4B) and could

therefore also potentially enable a 2’-O-methyl data reading scheme in conjunction with Taq
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polymerase. Broadly speaking, however, for most xNAs there are no known RTs or poly-
merases capable of reverse transcription into sequencing-compatible DNA, especially at the
low error rates amenable for data storage [156]. Therefore, the fact that RTX itself had initial
broad specificities suggests that it might prove to be a useful starting point for engineering
numerous high-fidelity, xNA-compatible polymerases. Indeed, the proofreading capabilities
available via RTX may ultimately be compatible with further evolved xNA polymerases with
more dramatically altered sugar backbones such as, HNA, LNA, or TNAs, enabling high fi-
delity reverse transcription of exotic substrates. Additionally, given that non-proofreading
DNA polymerases have been evolved to utilize fully 2’-O-methyl modified templates or syn-
thesize fully-modified products [32], it may be feasible to further engineer RTX-OMe to both
utilize and transcribe fully-modified oligonucleotides for protected storage schemes. Second,
even with improved proofreading, the errors and limitations inherent in both reading and
writing require encoding schemes with error correction or tolerance for high error rates at
both the software and hardware levels [59] [77, 17, 138, [I87]. Fortunately, our computa-
tional method’s primary dependence on universal alignment parameters (match, mismatch,
gap opening, and gap extension scores) and sequence properties (GC content, homopolymer
stretch) suggests that it should not only be applicable to various types of consensus searches,

but also easily scale with the number of sequences.

Overall, modified nucleic acids offer an attractive, nuclease-resistant medium for long
term data storage, especially when read out by evolved, low-error xenopolymerases and an
associated, deletion-robust information decoding algorithm. Such xNA systems for informa-
tion storage could also potentially provide a steganographic and cryptogenetic approach to

hidden message storage among otherwise normal information, where privileged information
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could only be discovered with privileged polymerases (Figure [A.9)). More broadly, with the
development of multiple xNA-specific xenopolymerases, it may be possible to encode infor-
mation in separate channels (i.e. sugar backbone variants) and to independently retrieve the

information in each channel using a channel-specific polymerase.

A.4 Methods

Reverse Transcription CSR (RT-CSR). RTX polymerase libraries were created
through error prone PCR (unless otherwise indicated) to have a mutation rate of 1-2 amino
acid mutations per gene. Libraries were cloned into tetracycline inducible vector and electro-
porated into DH10B E. coli. Library sizes were maintained with a transformation efficiency
of at least 106, but more typically 107-108. Induced overnight library cultures were seeded
at a 1:20 ratio into fresh 2xYT media supplemented with 100 ug / mL ampicillin and grown
for 1 hour at 37°C. Cells were subsequently induced by the addition of anhydrotetracycline
(typically at a final concentration of 200 ng/mL) and incubated at 37°C for 4 hours. In-
duced cells (200 uL total) were spun in a tabletop centrifuge at 3,000 x g for 8 minutes.
The supernatant was discarded and the cell pellet was resuspended in 150 plb RTCSR mix:
1x Selection buffer (50 mM Tris-HCI (pH 8.4), 10 mM (NH4)2S04, 10 mM KCl, 2 mM
MgSO04), 260 uM dNTPs, 530 nM forward and reverse 2’ O-methyl containing primers (de-
tailed in Table . The resuspended cells were placed into a 2 mL tube with a 1mL rubber
syringe plunger and 600 uL of oil mix (73% Tegosoft DEC, 7% AbiIIWE09 (Evonik), and
20% mineral oil (Sigma-Aldrich)). The emulsion was created by placing the cell and oil mix
on a TissueLyser LT (Qiagen) with a program of 42Hz for 4 minutes. The emulsified cells
were thermal-cycled with the program: 95°C - 3min, 20x (95°C-30 sec, 62°C-30 sec, 68°C-2
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min). Emulsions were broken by spinning the reaction (10,000x g - 5 min), removing the top
oil phase, adding 150 pL of H20 and 750 pL chloroform, vortexing vigorously, and finally
phase separating in a phase lock tube (5Prime). The aqueous phase was cleaned using a
PCR purification column which results in purified DNA, including PCR products as well as
plasmid DNA. Subamplification with corresponding outnested recovery primers ensures that
only polymerases that reverse transcribed are PCR amplified. Typically this is achieved by
addition of 1/10 the total purified emulsion using Accuprime Pfx (ThermoFisher) in a 20
cycle PCR, however challenging rounds of selection could require increasing the input DNA

or cycle number to achieve desired amplification.

Cloning and purification of polymerase variants. Escherichia coli DH10B and
BL21 (DE3) strains were used for cloning and expression, respectively. Strains were main-
tained on either Superior or 2X YT growth media. Polymerases were cloned into a modified
pET21 vector using Ndel and BamHI sites. Overnight cultures of BL21 (DE3) harboring
each of the variants were grown overnight in Superior broth at 37°C. Cells were then diluted
1:250, and protein production was induced with 1 mM IPTG during mid-log at 18°C for 20
hrs. Harvested cells were flash-frozen and lysed by sonication. Polymerases were purified
using a gravity flow Ni-NTA column followed by HiTrap Heparin column (GE) using FPLC.
Purified fractions were pooled and dialyzed into storage buffer (50 mM Tris-HCI, 50 mM
KCI, 0.1 mM EDTA, 1 mM DTT, 0.1% nonidet p40, 0.1% Tween20, and 50% glycerol pH
8.0). Polymerase concentration was determined using a Bradford assay and diluted to a

working stock of 0.2 mg / mL.

Primer Extension Assay. 10 pmol of 5 fluorescein labeled primer (RT.Probe or

RT.Probe.3ddc) were annealed with 50 pmol of template DNA, RNA, or 2" O-methyl DNA
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(DNA.TEMP, RNA.TEMP, or Ome. TEMP, respectively) and 0.2 pg of polymerase by heat
denaturation at 80°C for 1 minute and allowing to cool to room temperature. Reactions were
initiated by the addition of a ”start” mix which contained: 1x Assay Buffer, 2 mM MgSO4
(total) and 200 uM dNTPs. Reactions were incubated for 5 minutes at 68°C. The labeled
primer was removed from the template strand by heating sample at 75°C for 5 minutes in 1x
dye (47.5% formamide, 0.01% SDS) and 1 nmol of unlabeled BigBlocker oligonucleotide (to
competitively bind the template strand). Samples were run on a 20% (7 M urea) acrylamide

gel.

PCR Proofreading Assay. 50 ul. PCR reactions were set up with a final concen-
tration of 1x Assay Buffer (60 mM Tris-HCI (pH8.4), 25 mM (NH4)2S04, 10 mM KCI), 200
uM dNTPs, 2 mM MgSO4, 400 nM (DiDeTest.F/DiDeTest.R) forward and reverse primers,
20 ng of template plasmid and 0.2 pug polymerase. Reactions were thermal-cycled using the
following program: 95°C - 1 min, 25x (95°C- 30 sec, 55°C- 30 sec, 68°C- 2 min 30 sec).

RT-PCR Assay. 50 uL reverse transcription PCR (RT-PCR) reactions were set up
on ice with the following reaction conditions: 1x Assay Buffer, 1 mM MgSO4, 1 M Betaine
(Sigma-Aldrich), 200 uM dNTPs, 400 nM reverse primer Polll.R, 400 nM forward primer
PolIl.F2, 40 units RNasin Plus (Promega), 0.2 ug polymerase and 1 ug of Total RNA from
Jurkat cells (Ambion). Reactions were thermal-cycled according to the following parameters:

68°C - 30 min, 25x (95°C- 30 sec, 68°C - 30 sec, 68°C - 30 s/kb).

Encoding of information into oligonucleotides. We first combined each set of
documents into a tar.xz file and padded the tail end with zeros such that the final file size
was a multiple of 16 bytes. We then used DNA Fountain (Erlich) to generate 4000 oligonu-

cleotides encoding the cover message. We confirmed that none of these 4000 nucleotides had
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a DNA Fountain seed modulo 2000, a fact that will be used below to distinguish the hidden
oligonucleotides from the cover set upon sequencing. For the hidden message, we first gen-
erated 2,000,000 DNA Fountain oligonucleotides, and kept only 2000 out of the 8933 whose
DNA fountain seed was modulo 2000. We then computationally tested each oligonucleotide
set, cover and hidden, to see how many sequences we required to recover each message. For
each set, the oligonucleotides were shuffled into a random order and fed into DNA Fountain
until the message was recovered (DNA Fountain terminates upon successfully recovering the
message). This was repeated 1000 times. We recorded the number of oligonucleotides DNA

Fountain required from each permutation before the message was decoded.

Synthesis of DNA and O’Methyl DNA for DNA Data Storage. The en-
coded oligonucleotide pools were each randomly arrayed on a 12,472 feature chip using the
Customarray rearrayer software to give a ~3 fold sequence coverage for the standard un-
encrypted DNA pool (4,000 unique oligonucleotides) and ~6 fold sequence coverage for the
encrypted 2’-O-Methyl-DNA oligonucleotide pool (2,000 unique oligonucleotides). The un-
encrypted DNA oligonucleotides were synthesized on the Customarray B3 oligonucleotide
array synthesizer following standard phosphoramidite chemistry protocols. For the synthesis
of the encrypted, 2’-O-Methyl oligonucleotides, 5 grams of each of the 2’-O-methyl phos-
phoramidites (2-Ome Bz A, Cat. #27-1842; 2-Ome Ac C, Cat. #27-1823; 2’-Ome U,
27-1825; 2’-Ome iBu G, Cat. #27-1846) were purchased from Thermo Scientific and re-
suspended in 100mL anhydrous acetonitrile and used for oligonucleotide synthesis on the
chip following standard DNA synthesis protocols. Following the completion of the synthesis,
the oligonucleotide pools were cleaved and deprotected directly from the chip surface using

aqueous ammonia at 65°C for 4 hours. The cleaved and deprotected oligonucleotide pools
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were resuspended in TE buffer and purified on a Micro Bio-spin column (Biorad) following
the manufacturer’s protocol. The column purified oligonucleotide pools were then used for

further analysis.

Preparation of DNA for NGS Sequencing. Synthesized oligonucleotides were
pooled in a ratio of 1 part DNA to 10 parts O-methyl DNA prior to amplification. To
prepare oligonucleotides for NGS the pools were PCR amplified to add adaptor sequences.
Reactions were indexed using I[llumina small RNA primers (RPI1-KOD, RPI2-RTX, RPI3-
RTX-Ome, RPI4-OneTaq One Step RTPCR (NEB)). For KOD, RTX, and RTX-Ome: 50uL
PCR reactions were prepared with 1x Assay buffer, 200 pM dNTPS, 1 M Betaine, 400 nM
RP1 primer, 400 nM RPI (1-3), 10 ng oligonucleotide pool, and 0.2 pug of KOD, RTX, or
RTX-Ome polymerase (polymerase added after temperature reached 94°C). Reactions were
cycled using a program: 94°C - 30s; 12x cycles (94°C - 15s, 65°C (-1°C/cycle) - 15s, 68°C -
10 minutes). For OneTaq One-step RT-PCR kit, the manufacturer’s recommended protocol
was used with the same concentration of pooled oligonucleotides. After thermal cycling,
products were cleaned using Wizard SV PCR purification kit (Promega) and eluted in 15
uL H20. A secondary PCR was used to further amplify products from the RT-PCR before
submission to the UT GSAF facility. Accuprime PFX PCR (Thermo Scientific) was used to
amplify 5 uL of the eluted primary amplification with universal outnested primers (Universal

F/Universal R) for 25 additional cycles.

Informatic recovery. Starting with raw sequencing reads, we first trimmed adapters
and filtered reads to be between 50bp and 90bp using flexbar. We clustered the resulting
reads using cd-hit at a 70% sequence similarity. For each cluster, we performed multiple

sequence alignment using mafft with a gap penalty of zero and weighted bases according
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to the read’s original length. A consensus sequence is built based on the most common
base and gaps are filled until the sequence reaches our target length. Using knowledge of
the Reed-Solomon code, GC content, and homopolymer constraints, we ensured that the
constructed consensus sequence matched the initial design parameters and if not, iterated
through the gaps until such a sequence was found. Sequences were inputted into a modified
DNA fountain program, where sequences needing less than 20 iterations were fixed and the
remaining shuffled. The aggressive flag in DNA fountain was utilized and run 1000 times,

with the most commonly occurring md5 checksum used as the basis for decoding.

Abbreviations. RT = reverse transcriptase; OMe = 2’-O-methyl.
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Conserved mutations are colored incrementally darker red to indicate increased frequency. Mu-
tations found in RTX-Ome polymerase are labeled with KOD polymerase reversions indicated in

orange. The template strand is labeled in blue and primer strand in yellow.
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Figure A.3: Primer extension and proofreading activity of RTX-Ome on DNA,
RNA, and 2’-O-methyl templates.

Primer extension reactions of KOD, RTX, and RTX-Ome polymerases and proofreading deficient
counterparts (exo-) on DNA, RNA, and 2’-O-methyl templates. Extension reactions were performed
with matched 3’ primer:template (left) or a 3’ deoxy mismatch primer (right), which must be cleaved
prior to extension. Gray arrow indicates unextended fluorescently labeled primer and full length
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product is marked by a black arrow. In the DNA template uracil is replaced with thymine.



A Native DNA

File Type Size File Type Size
AACS Encryption Flag Image  1KB Cryptographie Indechiffrable Text 3 KB
Budget Excel 5 KB Schroder Message Enigma Text 1KB
Facebook Facial Recognition HTML 2 KB Rasch Message Enigma Text 1KB
GPS Location History KML 2 KB Kryptos Pane: 1 Text 1k8
Phone Contacts Vcard 1KB irvpzos :anel g Iex: 1 ig
Edgar Allen Poe “Gold Bug” Text 30 KB Typtos rane ex
Tic Tac Toe Game 1KB Kryptos Panel 4 - 1K8
Tortilla Reci Text TKE Unbroken U Boat Message Enigma Text 1KB
ortifa Reclpe X Von Looks Message Enigma Text 1KB
Wikileaks Missing Statement Text 12 KB
Zimmerman Telegram Text 1KB
Recovery of Native Oligonucleotides Recovery of Modified Oligonucleotides
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g 8
e 2
1000 500
0 0 I .
KOD M-MLV/Taq RTX RTX-Ome KOD M-MLV/Taq RTX RTX-Ome
polymerase polymerase

Figure A.4: Encoding and decoding of information into oligonucleotides.
A. The listed files were encoded into DNA. B. Recovery performance of each tested polymerase
in native DNA oligonucleotides (left) and 2’-O-methyl (right) oligonucleotides. The dotted line

indicates the average number of oligonucleotides needed for decoding based on our simulations.
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Round # aqe R R P otal O
0 Error Prone PCR
1 N/A RTCSR.Ome5.F | RTCSR.Ome5.R 10
2 N/A RTCSR.Ome5.F | RTCSR.Ome5.R 10
3 N/A RTCSR.Omel0.F /| RTCSR.Ome5.R 15
4 N/A RTCSR.Omel0.F / RTCSR.Ome10.R 20
5 N/A RTCSR.Omel0.F /| RTCSR.Omel10.R 20
6 N/A RTCSR.Ome20.F | RTCSR.Ome10.R 30
7 N/A RTCSR.Ome20.F | RTCSR.Ome20.R 40
8 Gene Shuffling RTCSR.Ome20.F /| RTCSR.Ome20.R 40
9 N/A RTCSR.Ome20.F | RTCSR.Ome20.R 40
10 N/A RTCSR.Ome20.F /| RTCSR.Ome20.R 40
11 N/A RTCSR.Ome20.F /| RTCSR.Ome51.R 71
12 N/A RTCSR.Ome20.F /| RTCSR.Ome51.R 71
13 N/A RTCSR.Ome20.F | RTCSR.Ome51.R 71
14 N/A RTCSR.Ome20.F /| RTCSR.Ome51.R 71
15 N/A RTCSR.Ome20.F /| RTCSR.Ome51.R 71
16 N/A RTCSR.Ome30.F | RTCSR.Ome51.R 81
17 N/A RTCSR.Ome30.F /| RTCSR.Ome51.R 81
18 N/A RTCSR.Ome30.F /| RTCSR.Ome51.R 81

Table A.1: Selection conditions for the evolution of a 2’-O-methyl reverse tran-

scriptase using RT-CSR.
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Amino Acid Round Variant Amino Acid VEUEL

Position R 18 Frequency Position Frequency
498 G A 45.00% 559 K R 15.20%
251 E K 41.80% 276 E D 15.20%
350 G \' 41.00% 741 \' A 14.60%
159 M T 33.60% 484 R H 14.30%
381 H R 24.20% 755 L S 13.80%
488 1 L 22.20% 168 A T 13.70%
340 S P 22.10% 353 \'4 1 13.50%
384 H Y 21.70% 768 W R 12.30%
468 K N 21.60% 214 F L 12.10%
40 A \'4 21.30% 247 R L 11.50%
353 Vv L 20.20% 605 T A 11.10%
498 G S 18.30% 704 L 1 10.90%
289 K R 18.20% 752 K E 10.80%
145 L P 17.60% 640 \'4 1 10.80%
242 Q R 17.50% 684 K R 10.70%
664 K R 17.20% 703 \'4 1 10.60%
44 D N 16.50% 523 M T 10.50%
244 M F 16.10% 248 F L 10.50%
152 F S 15.60% 298 A S 10.10%
418 v I 15.30% 309 A T 10.00%

Table A.2: NGS sequencing of the OMe RT-CSR Round 18 pool.
Mutations are mapped to the parental RTX polymerase. Only mutations with over 10% frequency

are shown.
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SR kG Mutations (RTX Reference Sequence) UG

Variant Mutations
R TX.Ome V1 A40V, D44N, Q242R, M244F, E251K, S340P, G350V, V353L, H381R, H384Y, 16
V4181, K468N, R484H, 1488L, G498A, K664R
A40V, D44N, Q242R, M244F, E251K, S340P, G350V, V353L, V418, K468N,
SIES S R484H, 1488L, GA98A L
RTX-Ome V3 A40V, Q242R, M244F, E251K, S340P, G350V, V353L, K468N, 14881, G498A 10
RTX-Ome V4 A40V, E251K, S340P, G350V, V353L, K468N, 1488L, GA98A 8
RTX-Ome V5 A40V, E251K, S340P, G350V, V353L, H381R, H384Y, K468N, 1488, GA98A 10
R TX.Ome A40V, E251K, S340P, G350V, V353I(L6'6I-4|13;{81 R, H384Y, K468N, 1488L, GA98A, "

Table A.3: RTX-Ome variants constructed using NGS data and structure guided

design.
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Figure A.5: Characterization of designed RTX-Ome polymerase variants.

A. Primer extension of designed polymerase variants (V1-V6) on 2’-O-methyl templates. Fluores-
cently labeled primers (OMe Probe F) were extended by 44 nucleotides before reaching the end of
the template strand (OMe Long R). B. Polymerase variants were tested in a single-enzyme RT-
PCR reaction to determine their efficacy for RNA reverse transcription. A 2 kb RNA fragment of
PolR2A from human total RNA was amplified using primers Polll.LF2 and Polll.R C. 3’ Dideoxy
mismatch primers (PCRTest.Dide.F /PCRTest.Dide.R) were used in a PCR reaction to determine

proofreading capabilities on a DNA template.
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Figure A.6: DNA Fountain scheme for encoding data files into unmodified and
modified oligonucleotides.
A. The unmodified file is encoded. First, it is padded to a multiple of 16 bytes for compatibility with
DNA Fountain. We then let DNA Fountain generate 4000 oligonucleotides to encode it. We filter
all oligos with a DNA Fountain seed modulo 2000 (by chance, none were found in our particular
run). We then test how many oligos are sufficient to recover the original (padded) file by randomly
shuffling the 4000 oligo file and feeding it into the DNA Fountain decoder. Since the decoder stops
as soon as it recovers the file, we can tally how many oligos out of the 4000 are required. Repeating
this test 1000 times gives statistics that indicafl®8ven in cases with loses larger than 1100 out of
4000 it is likely to recover the file. Finally, we perform next-generation sequencing on the 4000
oligos. B. We perform the analogous procedure for the modified file, except we want to encode only
oligos with modulo 2000 DNA Fountain seeds, hence the large number of initial oligos generated.

The remaining steps are identical, except synthesis uses 2’-OMe bases.
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Figure A.7: Distribution of NGS read sizes.

The vast majority of sequences are less than the designed length of 88 bases.
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Take raw sequencing reads, trim.
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Figure A.8: NGS read reconstruction workflow.
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Figure A.9: Potential cryptogenetic application for RTX-Ome and other xenopoly-

merases capable of reading information encoded in xINA oligonucleotides.
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