Solid-phase assembly of micrometer-scale crisscross DNA origami structures
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Bead-based purification of structures

able method for producing micron-scale hierarchical origami structures,
expanding their accessibility and potential for diverse applications.

The crisscross assembly mechanism
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involves the hybridization of a single with Growth fronts rejoin removes excess slats and partially assembled structures to yield complet-
many other origami slats. Growth is achieved through cooperative bind- ed structures at target concentrations. The first round of purification se-
ing of . To overcome the energetic barrier of initi- lects structures by bead attachment handles on the seed origami, while
ation, a gridiron seed origami nucleates assembly by providing binding the second round selects by a different set of attachment handles on slats
sites for the stronger on the first set of slats. DNA strand that are among the last to assemble.
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CAD environment as well as scripting packages for megastructure visual-
ization, handle selection, and generation of liquid handling instructions.
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Nucleation is initially fast and stepwise assembly shows all-or-nothing behavior

once ideal growth conditions are met for solid-phase crisscross assembly. An average of 6 nucleation slats attach to the seed within 15 minutes, but subsequent
attachments occur more slowly (aggregated counts from TEM micrographs, left). When stepwise assembly is performed at 1 hour incubation steps with varying
numbers of slats (while maintaining a constant overall slat concentration), crisscross structures are either terminated at Steps 1 - 3 or fully assembled, suggesting
that the early steps present a bottleneck in the assembly mechanism (counts from TEM, right).
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